Integral formulas for Fourier coefficients

Ryan C. Daileda

Trinity University

Partial Differential Equations
 Lecture 6

Recall: Relative to the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

the functions

$$
1, \cos (x), \cos (2 x), \cos (3 x), \ldots \sin (x), \sin (2 x), \sin (3 x), \ldots
$$

satisfy the orthogonality relations

$$
\begin{aligned}
& \langle\cos (m x), \sin (n x)\rangle=0 \\
& \langle\cos (m x), \cos (n x)\rangle= \begin{cases}0 & \text { if } m \neq n \\
\pi & \text { if } m=n \neq 0 \\
2 \pi & \text { if } m=n=0\end{cases} \\
& \langle\sin (m x), \sin (n x)\rangle= \begin{cases}0 & \text { if } m \neq n, \\
\pi & \text { if } m=n\end{cases}
\end{aligned}
$$

By the linearity of the inner product, if

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

then

$$
\begin{aligned}
\langle f(x), \cos (m x)\rangle= & a_{0} \overbrace{\langle 1, \cos (m x)\rangle}^{=0 \text { unless } m=0}+\sum_{n=1}^{\infty}(a_{n} \overbrace{\langle\cos (n x), \cos (m x)\rangle}^{=0 \text { unless } m=n} \\
& +b_{n} \underbrace{\langle\sin (n x), \cos (m x)\rangle}_{=0}) \\
& =a_{m}\langle\cos (m x), \cos (m x)\rangle \\
& \Rightarrow a_{m}=\frac{\langle f(x), \cos (m x)\rangle}{\langle\cos (m x), \cos (m x)\rangle}
\end{aligned}
$$

Likewise, one can show that

$$
b_{m}=\frac{\langle f(x), \sin (m x)\rangle}{\langle\sin (m x), \sin (m x)\rangle}
$$

Expressing the inner products as integrals gives:

Theorem (Euler's Formulas)

If f is 2π-periodic and piecewise smooth, then its Fourier coefficients are given by

$$
\begin{aligned}
& a_{0}=\frac{\langle f(x), 1\rangle}{\langle 1,1\rangle}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x, \\
& a_{n}=\frac{\langle f(x), \cos (n x)\rangle}{\langle\cos (n x), \cos (n x)\rangle}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \quad(n \neq 0), \\
& b_{n}=\frac{\langle f(x), \sin (n x)\rangle}{\langle\sin (n x), \sin (n x)\rangle}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x .
\end{aligned}
$$

Remarks

- Technically we should have used $\frac{f(x+)+f(x-)}{2}$. However, the integrals cannot distinguish between this and $f(x)$.
- Because all the functions in question are 2π-periodic, we can integrate over any convenient interval of length 2π.
- If $f(x)$ is an odd function, so is $f(x) \cos (n x)$, and so $a_{n}=0$ for all $n \geq 0$.
- If $f(x)$ is an even function, then $f(x) \sin (n x)$ is odd, and so $b_{n}=0$ for all $n \geq 1$.

Example

Find the Fourier series for the 2π-periodic function that satisfies $f(x)=x$ for $-\pi<x \leq \pi$.

The graph of f (a sawtooth wave):

Because f is odd, we know

$$
a_{n}=0 \quad(n \geq 0) .
$$

According to Euler's formula:

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin (n x) d x \\
& =\frac{1}{\pi}\left(\frac{-x \cos (n x)}{n}+\left.\frac{\sin (n x)}{n^{2}}\right|_{-\pi} ^{\pi}\right) \\
& =\frac{1}{\pi}\left(\frac{-\pi \cos (n \pi)}{n}-\frac{\pi \cos (-n \pi)}{n}\right) \\
& =\frac{-2 \cos (n \pi)}{n}=\frac{(-1)^{n+1} 2}{n}
\end{aligned}
$$

Therefore, the Fourier series of f is

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2}{n} \sin (n x)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin (n x)}{n}
$$

Remark: Except where it is discontinuous, this series equals $f(x)$.

Example

Find the Fourier series of the 2π-periodic function satisfying $f(x)=|x|$ for $-\pi \leq x<\pi$.

The graph of f (a triangular wave):

This time, since f is even,

$$
b_{n}=0 \quad(n \geq 1) .
$$

By Euler's formula we have

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=\frac{1}{\pi} \int_{0}^{\pi} x d x=\left.\frac{1}{\pi} \frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{\pi}{2}
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{|x| \cos (n x)}_{\text {even }} d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x \\
& =\frac{2}{\pi}\left(\frac{x \sin (n x)}{n}+\left.\frac{\cos (n x)}{n^{2}}\right|_{0} ^{\pi}\right)=\frac{2}{\pi}\left(\frac{\cos (n \pi)}{n^{2}}-\frac{1}{n^{2}}\right) \\
& =\frac{2}{\pi n^{2}}\left((-1)^{n}-1\right)= \begin{cases}\frac{-4}{\pi n^{2}} & \text { if } n \text { is odd, } \\
0 & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

In the Fourier series we may therefore omit the terms in which n is even, and assume that $n=2 k+1, k \geq 0$:

$$
\begin{aligned}
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x) & =\frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{-4}{\pi(2 k+1)^{2}} \cos ((2 k+1) x) \\
& =\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) x)}{(2 k+1)^{2}} .
\end{aligned}
$$

Remarks:

- Since k is simply an index of summation, we are free to replace it with n again, yielding

$$
\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\cos ((2 n+1) x)}{(2 n+1)^{2}}
$$

- Because $f(x)$ is continuous everywhere, this equals $f(x)$ at all points.

Example

Use the result of the previous exercise to show that

$$
1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

If we set $x=0$ in the previous example, we get

$$
0=f(0)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\cos (0)}{(2 n+1)^{2}}=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}
$$

Solving for the series gives the result.
Remark: In Calculus II you learned that this series converges, but were unable to obtain its exact value.

Example

Find the Fourier series of the 2π-periodic function satisfying $f(x)=0$ for $-\pi \leq x<0$ and $f(x)=x^{2}$ for $0 \leq x<\pi$.

The graph of f :

Because f is neither even nor odd, we must compute all of its Fourier coefficients directly.

Since $f(x)=0$ for $-\pi \leq x<0$, Euler's formulas become

$$
a_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} x^{2} d x=\frac{1}{2 \pi}\left(\left.\frac{x^{3}}{3}\right|_{0} ^{\pi}\right)=\frac{\pi^{2}}{6}
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{0}^{\pi} x^{2} \cos (n x) d x=\frac{1}{\pi}\left(\frac{x^{2} \sin (n x)}{n}+\frac{2 x \cos (n x)}{n^{2}}-\left.\frac{2 \sin (n x)}{n^{3}}\right|_{0} ^{\pi}\right) \\
& =\frac{1}{\pi} \cdot \frac{2 \pi \cos (n \pi)}{n^{2}}=\frac{2(-1)^{n}}{n^{2}},
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{0}^{\pi} x^{2} \sin (n x) d x=\frac{1}{\pi}\left(-\frac{x^{2} \cos (n x)}{n}+\frac{2 x \sin (n x)}{n^{2}}+\left.\frac{2 \cos (n x)}{n^{3}}\right|_{0} ^{\pi}\right) \\
& =\frac{1}{\pi}\left(-\frac{\pi^{2} \cos (n \pi)}{n}+\frac{2 \cos (n \pi)}{n^{3}}-\frac{2}{n^{3}}\right)=\frac{(-1)^{n+1} \pi}{n}+\frac{2\left((-1)^{n}-1\right)}{\pi n^{3}} .
\end{aligned}
$$

Therefore the Fourier series of f is

$$
\frac{\pi^{2}}{6}+\sum_{n=1}^{\infty}\left(\frac{2(-1)^{n}}{n^{2}} \cos (n x)+\left(\frac{(-1)^{n+1} \pi}{n}+\frac{2\left((-1)^{n}-1\right)}{\pi n^{3}}\right) \sin (n x)\right) .
$$

This will agree with $f(x)$ everywhere it's continuous.

Convergence of Fourier series

Given a Fourier series

$$
\begin{equation*}
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) \tag{1}
\end{equation*}
$$

let its Nth partial sum be

$$
\begin{equation*}
s_{N}(x)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) . \tag{2}
\end{equation*}
$$

According to the definition of an infinite series, the Fourier series (1) is equal to

$$
\lim _{N \rightarrow \infty} s_{N}(x) .
$$

According to the definition of the limit:

- We can approximate the (infinite) Fourier series (1) by the (finite) partial sums (2).
- The approximation of (1) by (2) improves (indefinitely) as we increase N.

Because $s_{N}(x)$ is a finite sum, we can use a computer to graph it.

In this way, we can visualize the convergence of a Fourier series.

Let's look at some examples...

These examples illustrate the following results. In both, $f(x)$ is 2π-periodic and piecewise smooth.

Theorem (Uniform convergence of Fourier series)

If $f(x)$ is continuous everywhere, then the partial sums $s_{N}(x)$ of its Fourier series converge uniformly to $f(x)$ as $N \rightarrow \infty$.
That is, by choosing N large enough we can make $s_{N}(x)$ arbitrarily close to $f(x)$ for all x simultaneously.

Theorem (Wilbraham-Gibbs phenomenon)

If $f(x)$ has a jump discontinuity at $x=c$, then the partial sums $s_{N}(x)$ of its Fourier series always "overshoot" $f(x)$ near $x=c$. More precisely, as $N \rightarrow \infty$, the the ratio between the peak of the overshoot and the height of the jump tends to

$$
\frac{1}{\pi} \int_{0}^{\pi} \frac{\operatorname{sint}}{t} d t-\frac{1}{2}=0.08948 \ldots \quad \text { (about } 9 \% \text { of the jump). }
$$

The Wilbraham-Gibbs phenomenon

A function $f(x)$ (in blue) with a jump discontinuity and a partial sum $s_{N}(x)$ (in red) of its Fourier series:

$$
\lim _{N \rightarrow \infty} \frac{j_{N}}{h}=0.08948 \ldots
$$

General Fourier series

If $f(x)$ is $2 p$-periodic and piecewise smooth, then $\hat{f}(x)=f(p x / \pi)$ has period $\frac{2 p}{p / \pi}=2 \pi$, and is also piecewise smooth.

It follows that $\hat{f}(x)$ has a Fourier series:

$$
\frac{\hat{f}(x+)+\hat{f}(x-)}{2}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

Since $f(x)=\hat{f}(\pi x / p)$, we find that f also has a Fourier series:

$$
\frac{f(x+)+f(x-)}{2}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right) .
$$

We can use Euler's formulas to find a_{n} and b_{n}. For example

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{f}(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(\frac{p x}{\pi}\right) d x=\frac{1}{2 p} \int_{-p}^{p} f(t) d t,
$$

where in the final equality we used the substitution $t=p x / \pi$.

In the same way one can show that for $n \geq 1$

$$
\begin{aligned}
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(t) \cos \left(\frac{n \pi t}{p}\right) d t \\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f(t) \sin \left(\frac{n \pi t}{p}\right) d t
\end{aligned}
$$

Since t is simply a "dummy" variable of integration, we may replace it with x in each case.

Remarks on general Fourier series

Everything we've done with 2π-periodic Fourier series continues to hold in this case, with p replacing π :

- We can compute general Fourier coefficients by integrating over any "convenient" interval of length $2 p$.
- If p is left unspecified, then the formulae for a_{n} and b_{n} may involve p.
- If $f(x)$ is even, then $b_{n}=0$ for all n.
- If $f(x)$ is odd, then $a_{n}=0$ for all n.
- We still have the uniform convergence theorem and Wilbraham-Gibbs phenomenon.

Example

Find the Fourier series of the $2 p$-periodic function that satisfies $f(x)=2 p-x$ for $0 \leq x<2 p$.

The graph of $f(x)$:

We will use Euler's formulas over the interval $[0,2 p]$ to simplify our calculations.

We have

$$
a_{0}=\frac{1}{2 p} \int_{0}^{2 p} 2 p-x d x=\frac{1}{2 p}\left(2 p x-\left.\frac{x^{2}}{2}\right|_{0} ^{2 p}\right)=p
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{1}{p} \int_{0}^{2 p}(2 p-x) \cos \left(\frac{n \pi x}{p}\right) d x \\
& =\frac{1}{p}\left(\frac{p(2 p-x) \sin \left(\frac{n \pi x}{p}\right)}{n \pi}-\left.\frac{p^{2} \cos \left(\frac{n \pi x}{p}\right)}{n^{2} \pi^{2}}\right|_{0} ^{2 p}\right) \\
& =\frac{1}{p}\left(-\frac{p^{2} \cos (2 n \pi)}{n^{2} \pi^{2}}+\frac{p^{2}}{n^{2} \pi^{2}}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{p} \int_{0}^{2 p}(2 p-x) \sin \left(\frac{n \pi x}{p}\right) d x \\
& =\frac{1}{p}\left(\frac{-p(2 p-x) \cos \left(\frac{n \pi x}{p}\right)}{n \pi}-\left.\frac{p^{2} \sin \left(\frac{n \pi x}{p}\right)}{n^{2} \pi^{2}}\right|_{0} ^{2 p}\right) \\
& =\frac{1}{p}\left(\frac{2 p^{2}}{n \pi}\right)=\frac{2 p}{n \pi} .
\end{aligned}
$$

So the Fourier series of f is

$$
p+\sum_{n=1}^{\infty} \frac{2 p}{n \pi} \sin \left(\frac{n \pi x}{p}\right)=p+\frac{2 p}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{p}\right)
$$

Remark: This series is equal to $f(x)$ everywhere it is continuous.

