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1. Consider the PDE

3
∂u

∂x
− ∂u

∂y
= (x+ y)u2 (1)

a. Find constants c and d so that the linear change of variables

α = x+ by,

β = x+ dy,

transforms (1) into a PDE involving only one partial derivative.



b. Find the general solution to the transformed PDE you found in part a. [Remember: α
“thinks” β is a constant, and vice versa.]

c. Find the general solution to (1) by writing the solution you found in part c in terms of
x and y.

2. Consider the initial value problem

x
∂u

∂x
+ y

∂u

∂y
= 2,

u(y3, y) = y2.

(2)

a. Write down the system of characteristic ODEs of (2).



b. Solve the characteristic system you found in part a.

c. Use the result of part b to find the solution to (2).



3. Recall that the Lapace equation in two variables is the PDE

∂2u

∂x2
+
∂2u

∂y2
= 0. (3)

a. Show that any function of the form

u(x, y) = F (x+ iy) +G(x− iy),

where F and G are twice-differentiable and i2 = −1, is a solution of the Laplace
equation.

b. Find functions F and G in part a so that u(x, y) solves the Dirichlet problem

∂2u

∂x2
+
∂2u

∂y2
= 0, u(x, 0) = e−x, uy(x, 0) = 2,

on the domain H = R× [0,∞). [Remark: Your answer may involve i.]



c. Show that the function u(x, y) of part b is actually real-valued, i.e. show that all imag-
inary quantities in your answer cancel out.

4. Consider the 4-periodic function satisfying

f(x) =

{
0 if − 1 ≤ x < 0,

3− x if 0 ≤ x < 3.

a. Carefully sketch the graph of the Fourier series of f (for at least three periods). Be sure
to include labeled axes and indicate the scale on each.



b. Find the Fourier series of f .



5. Let f(x) and g(x) be the 2p-periodic functions whose graphs are shown below.

Graph of f(x):
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Graph of g(x):
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a. List the geometric operations necessary to transform the graph of f(x) into the graph
of g(x).



b. The Fourier series of f(x) is

p2

3
+

4p2

π2

∞∑
n=1

(−1)n

n2
cos

(
nπx

p

)
.

Use this and your answer to part a to find the Fourier series of g(x) without using
Euler’s integral formulas.



6. Let m ∈ N and n ∈ N0.

a. If m 6= n, show that the inner product of sin(mx) and cos(nx) on the interval [0, π]
equals

m ((−1)m+n+1 + 1)

m2 − n2
.



b. Compute the inner product of sin(mx) and cos(mx) on the interval [0, π].

c. Use parts b and c to show that sin(mx) and cos(nx) are orthogonal on the interval
[0, π] if and only if m and n have the same parity, i.e. are either both even or both odd.

d. How does the result of part c compare with the situation when we use the interval
[−π, π] instead?
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Useful Trigonometric Identities.

eiA = cosA+ i sinA (i2 = −1) cosA cosB = 1
2

(cos(A+B) + cos(A−B))

cos(A±B) = cosA cosB ∓ sinA sinB sinA sinB = 1
2

(cos(A−B)− cos(A+B))

sin(A±B) = sinA cosB ± cosA sinB sinA cosB = 1
2

(sin(A+B) + sin(A−B))


