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1. For 0 ≤ x ≤ 3 let

f(x) = x− 1 and g(x) =

{
2− x if 0 ≤ x < 2,

0 if 2 < x ≤ 3.

Carefully sketch the following functions, for at least 3 periods. Be sure to include and label
your axes, and pay careful attention to the values at any points of discontinuity.

a. The cosine series of f(x).

b. The sine series of f(x).

c. The cosine series of g(x).

d. The sine series of g(x).



2. Use separation of variables to reduce the PDE

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

(
∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)
= 0

to a system of three ODEs. Do not attempt to solve this system.



3. Consider the ODE boundary value problem

X ′′ + kX = 0, 0 < x < 1,

X ′(0) = 0, X ′(1) = X(1).
(1)

a. Show that if k = 0, the only solution to (1) is X ≡ 0.

b. Show that if k = −µ2 < 0, then (up to scalar multiples) the only solutions to (1) are

X = eµx + e−µx, where e2µ =
µ+ 1

µ− 1
.

c. Show that if k = µ2 > 0, then (up to scalar multiples) the only solutions to (1) are
X = cos(µx), where tanµ = −1/µ.



4. Consider the PDE boundary value problem

ut = c2uxx, t > 0, 0 < x < L,

u(0, t) = 0, ux(L, t) = 0, t > 0,

u(x, 0) = f(x), 0 < x < L.

(2)

One can show that the separated solutions of (the homogeneous portion of) (2) are given by

un(x, t) = sin

(
(2n+ 1)πx

2L

)
e−( (2n+1)cπ

2L )
2
t, n ∈ N0,

and that the functions Xn(x) = sin
(

(2n+1)πx
2L

)
, n ∈ N0, are pairwise orthogonal on [0, L].

a. Use the Principal of Superposition to express the general solution to (2) as a series.

b. Compute the inner product (on [0, L]) of Xn(x) with itself . [Suggestion: Use the
identity 2 sin2A = 1− cos(2A).]

c. Express the coefficients in your answer to a in the form (constant)·(integral involving f).



5. If a constant (vertical) gravitational acceleration g > 0 is included in the derivation of
the vibrating string problem, one is led to the PDE boundary value problem

∂2u

∂t2
= c2

∂2u

∂x2
− g, t > 0, 0 < x < L,

u(0, t) = u(L, t) = 0, t > 0,
(3)

for the displacement u(x, t) of the string from the x-axis at time t.

a. Determine the steady state shape of the string (i.e. when ut ≡ 0).

b. If the string is initially given the shape of the function f(x) = 0 and released with no
initial velocity, determine its shape at any later time. [Suggestions: “Homogenize” the
PDE boundary value problem in question using your answer to part a. You can avoid
all integral computations by making use of the given table of Fourier series.]



b. (continued)

6. Solve the Dirichlet problem described by the diagram. [Suggestion: You can avoid all
integral computations by making use of the given table of Fourier series.]

a.

x

y
u=40

3

u=0

Δu=0



b.

x

y

u=0

u=0

u=0

1

2
u=100(1- )x

sin( y/4)u=100
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PDEs, Exam 2 Some Useful Results

• The solution of the boundary value problem

ut = c2uxx, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t > 0,

u(x, 0) = f(x), 0 < x < L,

is u(x, t) =
∑∞

n=1 bne
−λ2nt sin (µnx) , where µn = nπ

L
, λn = cµn and

bn =
2

L

∫ L

0

f(x) sin(µnx) dx.

• The solution of the boundary value problem

utt = c2uxx, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L,

is u(x, t) =
∑∞

n=1 (bn cos(λnt) + b∗n sin(λnt)) sin (µnx) , where µn = nπ
L

, λn = cµn and

bn =
2

L

∫ L

0

f(x) sin(µnx) dx, b∗n =
2

Lλn

∫ L

0

g(x) sin(µnx) dx.

• The solution of the boundary value problem

ut = c2(uxx + uyy), 0 < x < a, 0 < y < b, t > 0,

u(0, y, t) = u(a, y, t) = 0, 0 ≤ y ≤ b, t ≥ 0,

u(x, 0, t) = u(x, b, t) = 0, 0 ≤ x ≤ a, t ≥ 0,

u(x, y, 0) = f(x, y), 0 < x < a, 0 < y < b,

is u(x, y, t) =
∑∞

m=1

∑∞
n=1Amn sin(µmx) sin(νny)e−λ

2
mnt, where µm = mπ

a
, νn = nπ

b
,

λmn = c
√
µ2
m + ν2n, and

Amn =
4

ab

∫ b

0

∫ a

0

f(x, y) sin(µmx) sin(νny) dx dy.

• The solution of the boundary value problem

utt = c2(uxx + uyy), 0 < x < a, 0 < y < b, t > 0,

u(0, y, t) = u(a, y, t) = 0, 0 ≤ y ≤ b, t ≥ 0,

u(x, 0, t) = u(x, b, t) = 0, 0 ≤ x ≤ a, t ≥ 0,

u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y), 0 < x < a, 0 < y < b,

is u(x, y, t) =
∑∞

n=1

∑∞
m=1 (Bmn cos (λmnt) +B∗mn sin (λmnt)) sin(µmx) sin(νny), where

µm = mπ
a

, νn = nπ
b

, λmn = c
√
µ2
m + ν2n, and

Bmn =
4

ab

∫ b

0

∫ a

0

f(x, y) sin(µmx) sin(νny) dx dy,

B∗mn =
4

abλmn

∫ b

0

∫ a

0

g(x, y) sin(µmx) sin(νny) dx dy.



• The solution of the boundary value problem

uxx + uyy = 0, 0 < x < a, 0 < y < b, t > 0,

u(x, 0) = f1(x), u(x, b) = f2(x), 0 ≤ x ≤ a,

u(0, y) = g1(y), u(a, y) = g2(y), 0 ≤ x ≤ b,

is

u(x, y) =
∞∑
n=1

An sin(µnx) sinh(µn(b− y)) +
∞∑
n=1

Bn sin(µnx) sinh(µny)

+
∞∑
n=1

Cn sinh(νn(a− x)) sin(νny) +
∞∑
n=1

Dn sinh(νnx) sinh(νny),

where µn = nπ
a

, νn = nπ
b

and

An =
2

a sinh(µnb)

∫ a

0

f1(x) sin(µnx) dx, Bn =
2

a sinh(µnb)

∫ a

0

f2(x) sin(µnx) dx,

Cn =
2

b sinh(νna)

∫ b

0

g1(y) sin(νny) dy, Dn =
2

b sinh(νna)

∫ b

0

g2(y) sin(νny) dy.

• The general solution of the boundary value problem

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < a, 0 < θ < 2π,

u(a, θ) = f(θ), 0 ≤ θ ≤ 2π,

is u(r, θ) = a0 +
∑∞

n=1

(
r
a

)n
(an cos(nθ) + bn sin(nθ)), where

a0 =
1

2π

∫ 2π

0

f(θ) dθ,

an =
1

π

∫ 2π

0

f(θ) cos(nθ) dθ (n > 0),

bn =
1

π

∫ 2π

0

f(θ) sin(nθ) dθ (n > 0).



PDEs, Exam 2 2p-periodic Fourier series

Function Fourier Series

f(x) =

{
1 if 0 ≤ x < p,

−1 if − p ≤ x < 0

4

π

∞∑
k=0

1

2k + 1
sin

(
(2k + 1)πx

p

)
f(x) = x if − p ≤ x < p

2p

π

∞∑
n=1

(−1)n+1

n
sin

(
nπx

p

)
f(x) = x2 if − p ≤ x < p

p2

3
− 4p2

π2

∞∑
n=1

(−1)n+1

n2
cos

(
nπx

p

)
f(x) = p− |x| if − p ≤ x < p

p

2
+

4p

π2

∞∑
k=0

1

(2k + 1)2
cos

(
(2k + 1)πx

p

)
f(x) =

{
p− x if 0 ≤ x < p,

−p− x if − p ≤ x < 0

2p

π

∞∑
n=1

1

n
sin

(
nπx

p

)
f(x) =

{
1 if |x| < p

2
,

0 if |x| ≥ p
2

1

2
+

2

π

∞∑
n=1

sin
(
nπ
2

)
n

cos

(
nπx

p

)

f(x) =


1 if 0 ≤ x < p

2
,

−1 if −p
2
< x < 0,

0 if |x| ≥ p
2

2

π

∞∑
n=1

1− cos
(
nπ
2

)
n

sin

(
nπx

p

)

f(x) = x(p− |x|) if − p ≤ x < p
8p2

π3

∞∑
k=0

1

(2k + 1)3
sin

(
(2k + 1)πx

p

)
f(x) = |x|(p− |x|) if − p ≤ x < p

p2

6
− p2

π2

∞∑
k=1

1

k2
cos

(
2kπx

p

)
f(x) =

{
|x| if |x| ≤ p

2
,

p
2

if |x| > p
2

3p

8
+

2p

π2

∞∑
n=1

cos
(
nπ
2

)
− 1

n2
cos

(
nπx

p

)

f(x) =


x if |x| ≤ p

2
,

p
2

if x > p
2
,

−p
2

if x < −p
2

p

π2

∞∑
n=1

2 sin
(
nπ
2

)
+ (−1)n+1nπ

n2
sin

(
nπx

p

)

f(x) =

{
|x| if |x| ≤ p

2
,

0 if |x| > p
2

p

8
+

p

π2

∞∑
n=1

2 cos
(
nπ
2

)
+ sin

(
nπ
2

)
nπ − 2

n2
cos

(
nπx

p

)
f(x) =

{
x if |x| ≤ p

2
,

0 if |x| > p
2

p

π2

∞∑
n=1

2 sin
(
nπ
2

)
− cos

(
nπ
2

)
nπ

n2
sin

(
nπx

p

)
f(x) =

∣∣∣∣sin(πx2p

)∣∣∣∣ if − p ≤ x < p
2

π
− 4

π

∞∑
n=1

1

4n2 − 1
cos

(
nπx

p

)
f(x) = sin

(
πx

2p

)
if − p ≤ x < p

8

π

∞∑
n=1

(−1)n+1n

4n2 − 1
sin

(
nπx

p

)


