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1. An ideal elastic membrane with a radius of 2 units is set in motion at ¢ = 0 with an
initial shape described by the graph of the function f(r,6) = (4 —r?)r?sin(36), and an initial
uniform upward velocity of 1 unit per second. If the membrane constant is ¢ = 1, find an
expression for the shape of the membrane at any later time.



2. Consider the ODE boundary value problem

'+ 2 Fy+ ANz +1D)%eFy =0, 0<x<l,
y(0)=0, ¢'(1)=0.

a. Put (1) in Sturm-Liouville form. Identify p(x), ¢(z) and r(x). [Suggestion: Multiply by
€2I.]

(1)

b. Give an expression for the inner product (f, g) associated with (1).

c. Show that eigenfunctions of (1) with distinct eigenvalues are always orthogonal (relative
to the inner product in b).



d. Show that A = 0 is an eigenvalue of (1).

3. Consider the ODE boundary value problem
' +(1—2)y+Ay=0, 0<x< oo,
y'(0) =0, lim y(z)=0.
T—00

a. Put (2) in Sturm-Liouville form. Identify p(x), ¢(x) and r(x).

b. Give an expression for the inner product (f, g) associated with (2).



c. Show that y = e™**/2 and y = e~*"/2(42® — 2) are eigenfunctions of (2).

d. Show that / (422 — 2)e=*" dz = 0. [Suggestion: Use parts b and c.]
0



4. The surface of a solid sphere of radius 10 is heated so that the temperature at any
point that makes an angle of  with the north pole has temperature 3 cos? + 2. Find the
resulting steady state temperature throughout the sphere. [Suggestion: Note that 3z* 42 =
3Py(z) 4+ 2Py(x), where P,(x) is the nth Legendre polynomial].



5. Solve the PDE boundary value problem

o, o,
ot 8x4‘ ’
u(m,()):smx
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