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1. Let 0 < a < π and let f be the 2π-periodic function which satisfies

f(x) =


1

2a
if |x| ≤ a,

0 if a < |x| < π.

a. Find the Fourier series for f .

b. Use your answer to part a to evaluate
∞∑
n=1

sin(na) cos(na)

n
.



2. Assume that f ∈ L1(R) and that a ∈ R.

a. Show that
F
(
eiaxf(x)

)
(ω) = F (f(x)) (ω − a),

where F denotes the Fourier transform.

b. Show that

F (cos(ax)f(x)) (ω) =
f̂(ω − a) + f̂(ω + a)

2
,

where f̂ = F (f(x)). [Suggestion: Use part a.]



3. Consider the PDE boundary value problem

∆u = 0, 0 < x < a, 0 < y < b,

u(x, 0) = f1(x), 0 < x < a,

u(x, b) = f2(x), 0 < x < a,

ux(0, y) = g1(y), 0 < y < b,

u(a, y)− 2ux(a, y) = g2(y), 0 < y < b.

a. Decompose this problem into four subproblems, each of which may be solved using
separation of variables. Define these problems by labelling the interiors and boundaries
of the diagrams below.

a x

y

b

a x

y

b

a x

y

b

a x

y

b

b. How are the solutions u1, u2, u3 and u4 of the problems in part a related to the solution
u of the original problem? What fact are you using that guarantees this?



c. Suppose we replace the given PDE with the wave equation utt = c2∆u. If v(x, y) is the
steady state solution, and w(x, y, t) = u(x, y, t)− v(x, y), what are the PDE boundary
value problems that v and w solve? Define these problems by labelling the interiors and
boundaries of the diagrams below.

a x

y

b

a x

y

b



4. Consider the ODE
2x2y′′ + (x+ x2)y′ − y = 0, x > 0. (1)

a. Show that x = 0 is a regular singular point of (1).

b. Determine the two values of r for which (1) may have a solution of the form y =

xr
∞∑
n=0

anx
n (a0 6= 0). Why are we guaranteed that both values of r will yield solutions?

c. Find the recurrence relation satisfied by the coefficients an defined in part b.

d. Take a0 = 1 (for each value of r) in part b and determine the next 3 coefficients.



4. (continued)



5. Find the eigenvalues and eigenfunctions of the ODE boundary value problem

y′′ + λy = 0, 0 < x < L,

y(0) = y′(L) = 0.

[Suggestion: Begin by showing that there are no eigenfunctions for λ ≤ 0.]



6. Solve the boundary value problem

3y
∂u

∂x
+
∂u

∂y
= 2u, u(x, 0) = f(x), −∞ < x <∞, y > 0

using either the method of characteristics or the Fourier transform.



7. Consider Laplace’s equation

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

on the region 0 < r < a, 0 < θ < π/2 with the boundary conditions

u(r, 0) = 0, 0 < r < a,

u(r, π/2) = 0, 0 < r < a,

u(a, θ) = sin(2θ), 0 < θ < π/2,

|u(r, θ)| bounded as r → 0+.

a. Provide a physical interpretation of this problem.

b. Solve the problem using separation of variables. [Recall: The solutions of the Euler
equation x2y′′ + axy′ + by = 0 are y = c1x

r1 + c2x
r2 , where r1 6= r2 are the roots of the

indicial equation r2 + (a− 1)r + b = 0.]



7. (continued)



8. The motion of a chain of length L suspended from a fixed point, subject to a constant
gravitational acceleration g, can be modeled by the PDE boundary value problem

∂2u

∂t2
= g

(
∂2u

∂x2
+
∂u

∂x

)
, 0 < x < L, t > 0,

u(L, t) = 0, t > 0.

Using separation of variables one can show that the general solution is given by

u(x, t) =
∞∑
n=1

J0

(
αn

√
x

L

)(
An cos

(√
g

L

αn

2
t

)
+Bn sin

(√
g

L

αn

2
t

))
, (2)

where αn is the nth positive zero of J0.

a. Recall that the parametric Bessel functions J0(αnr/a) are pairwise orthogonal on the
interval [0, a] relative to the weight function w(r) = r. Use this fact to show that the
functions

Xn(x) = J0

(
αn

√
x

L

)
are pairwise orthogonal on the interval [0, L] relative to the weight function w(x) = 1.
[Suggestion: Perform the substitution r =

√
x.]

b. Use the complementary relation

∫ a

0

J2
0 (αnr/a)r dr = a2J2

1 (αn)/2 to show that the inner

product of Xn with itself on the interval [0, L] is equal to LJ2
1 (αn).

c. Use parts a and b to express the coefficients An and Bn of the general solution (2) in
terms of the initial conditions u(x, 0) = f(x) and ut(x, 0) = v(x).



8. (continued)
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