Exercise 1. Verify that both $u=\log \left(x^{2}+y^{2}\right)$ and $u=\arctan (y / x)$ are solutions of Laplace's equation $u_{x x}+u_{y y}=0$.

Exercise 2. Solve the boundary value problem.
a. $\quad r \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=e^{3 x}, \quad(x, y) \in \mathbb{R} \times(0, \infty)$,

$$
u(x, 0)=f(x)
$$

b. $\quad \frac{\partial u}{\partial x}-3 y \frac{\partial u}{\partial y}=0, \quad(x, y) \in(0, \infty) \times \mathbb{R}$,

$$
u(0, y)=y^{4}-2
$$

c. $\quad \frac{\partial u}{\partial x}-2 u \frac{\partial u}{\partial y}=0, \quad(x, y) \in(0, \infty) \times \mathbb{R}$,
$u(0, y)=y$
d. $\quad 4 x \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=2 y, \quad(x, y) \in \mathbb{R} \times(0, \infty)$,

$$
u(x, 0)=\log \left(8+x^{2}\right)
$$

Exercise 3. Show that the general solution to $u_{x y}+u_{x}=0$ has the form $u(x, y)=F(y)+$ $e^{-y} G(x)$. [Suggestion: Notice that $u_{x y}+u_{x}=\left(u_{y}+u\right)_{x}$.]

Exercise 4. Solve the wave equation subject to the initial conditions

$$
u(x, 0)=x e^{-x^{2}}, \quad u_{t}(x, 0)=\frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

Exercise 5. Suppose we want to find a solution of the (unbounded) wave equation that consists of a single traveling wave moving to the right with shape given by the graph of $f(x)$. What initial conditions are required to cause this to happen?

Exercise 6. This problem concerns the partial differential equation

$$
\begin{equation*}
u_{x x}+4 u_{x y}+3 u_{y y}=0 \tag{1}
\end{equation*}
$$

a. If F and G are twice differentiable functions, show that

$$
\begin{equation*}
u(x, y)=F(3 x-y)+G(x-y) \tag{2}
\end{equation*}
$$

is a solution to (1).
b. Use a linear change of variables to show that every solution to (1) has the form (2).
c. Find the solution to (1) that satisfies the initial conditions

$$
u(x, 0)=\frac{x}{x^{2}+1} \text { and } u_{y}(x, 0)=0 \text { for all } x
$$

Exercise 7. Show that the functions

$$
\cos x, \cos 3 x, \cos 5 x, \cos 7 x, \ldots
$$

are pairwise orthogononal relative to the inner product $\langle f, g\rangle=\int_{0}^{\pi / 2} f(x) g(x) d x$. [Suggestion: Use the identity $\cos (A+B)+\cos (A-B)=2 \cos A \cos B$.]

Exercise 8. Let

$$
\begin{aligned}
& f_{1}(x)=1 \\
& f_{2}(x)=2 x-1 \\
& f_{3}(x)=6 x^{2}-6 x+1 \\
& f_{4}(x)=20 x^{3}-30 x^{2}+12 x-1
\end{aligned}
$$

a. Verify that the polynomials f_{1}, f_{2}, f_{3} and f_{4} are pairwise orthogonal relative to the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.
b. Let $p(x)=x^{3}-2$. Use part a to write p as a linear combination of f_{1}, f_{2}, f_{3} and f_{4}. [Suggestion: Recall that since the f_{i} are orthogonal, if

$$
p=a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}
$$

then $\left.a_{j}=\left\langle p, f_{j}\right\rangle /\left\langle f_{j}, f_{j}\right\rangle.\right]$
c. Explain why the procedure of part \mathbf{b} fails if we take $p(x)=x^{5}-2 x+1$.

Exercise 9. For each 2π-periodic function f given: i. carefully sketch three periods of f and ii. carefully sketch three periods of the the Fourier series of f.
a. $f(x)= \begin{cases}\lfloor 2 x / \pi\rfloor & \text { if }-\pi \leq x<\pi, \\ f(x+2 \pi) & \text { otherwise. }\end{cases}$
b. $f(x)= \begin{cases}\min \{|3 x / \pi|, 1\} & \text { if }-\pi \leq x<\pi, \\ f(x+2 \pi) & \text { otherwise } .\end{cases}$
c. $f(x)= \begin{cases}\pi / 2 & \text { if }-\pi \leq x<0, \\ \pi-x / 2 & \text { if } 0 \leq x<\pi, \\ f(x+2 \pi) & \text { otherwise. }\end{cases}$

