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Exercise 1. Verify that both u = log(x2+y2) and u = arctan(y/x) are solutions of Laplace’s
equation uxx + uyy = 0.

If u = log(x2 + y2), then by the chain rule

ux =
2x

x2 + y2
⇒ uxx =

(x2 + y2)(2)− (2x)(2x)

(x2 + y2)2
=

2y2 − 2x2

(x2 + y2)2
,

and by the symmetry of u in x and y,

uyy =
2x2 − 2y2

(x2 + y2)2
.

Clearly then uxx + uyy = 0 in this case.

If u = arctan(y/x), then by the chain rule again

ux =
1

1 + ( y
x
)2

(
−y
x2

)
=

−y
x2 + y2

⇒ uxx =
(x2 + y2)(0)− (−y)(2x)

(x2 + y2)2
=

2xy

(x2 + y2)2
.

Likewise

uy =
1

1 + ( y
x
)2

(
1

x

)
=

x

x2 + y2
⇒ uyy =

(x2 + y2)(0)− (x)(2y)

(x2 + y2)2
=

−2xy

(x2 + y2)2

so that once again we have uxx + uyy = 0.

Exercise 2. Solve the boundary value problem.

a. r
∂u

∂x
+
∂u

∂y
= e3x, (x, y) ∈ R× (0,∞), u(x, 0) = f(x)

Because the coefficients of the derivatives are constants (r and 1), we perform the linear
change of variables

α = ax+ by, (1)

β = cx+ dy, (2)

ad− bc 6= 0. (3)

The usual application of the chain rule yields

∂u

∂x
= a

∂u

∂α
+ c

∂u

∂β
(4)

∂u

∂y
= b

∂u

∂α
+ d

∂u

∂β
(5)



so that the original PDE becomes

(ra+ b)
∂u

∂α
+ (rc+ d)

∂u

∂β
= e3x.

Taking a = 0, b = 1, c = −1 and d = r, and noting that in this case (1) and (2) imply
rα− β = x, we obtain

∂u

∂α
= e3(rα−β).

Integration with respect to α gives

u =
1

3r
e3(rα−β) + g(β) =

1

3r
e3x + g(−x+ ry). (6)

We now impose the initial condition to solve for g. Setting y = 0 we find that

f(x) = u(x, 0) =
1

3r
e3x + g(−x).

Solving for g and replacing x with −x tells us that

g(x) = − 1

3r
e−3x + f(−x).

Substituting this into the general solution (6) we finally arrive at

u(x, y) =
1

3r
e3x − 1

3r
e3(x−ry) + f(x− ry).

b.
∂u

∂x
− 3y

∂u

∂y
= 0, (x, y) ∈ (0,∞)× R, u(0, y) = y4 − 2

Because this PDE has the form

∂u

∂x
+ p(x, y)

∂u

∂y
= 0,

we may appeal to the näıve method of characteristics. The characteristic curves are
given by

dy

dx
= −3y ⇒ y = Ce−3x ⇒ C = ye3x.

The general solution therefore has the form

u(x, y) = f(ye3x).

As for the initial condition, we simply set y = 0:

y4 − 2 = u(0, y) = f(ye0) = f(y).

Hence
u(x, y) = y4e12x − 2.



c.
∂u

∂x
− 2u

∂u

∂y
= 0, (x, y) ∈ (0,∞)× R, u(0, y) = y

This is a quasilinear PDE, but because of the coefficient −2u multiplying the y deriva-
tive, the näıve method of characteristics is out. So we begin by parametrizing the initial
curve, essentially taking y as the parameter:

x0(a) = 0, y0(a) = a, z0(a) = a.

The characteristic ODEs are therefore

dx

ds
= 1,

dy

ds
= −2z,

dz

ds
= 0,

x(0) = 0, y(0) = a, z(0) = a.

The first immediately yields x = s and the last that z = a. The second the yields
y = −2as+ a. Since x = s we can solve the equation for y to obtain a:

a =
y

1− 2s
=

y

1− 2x
.

Hence

z = u(x, y) = a =
y

1− 2x
.

d. 4x
∂u

∂x
+
∂u

∂y
= 2y, (x, y) ∈ R× (0,∞), u(x, 0) = log(8 + x2)

This is a quasilinear PDE, and If we first divide through by 4x we can apply the näıve
method of characteristics. However, we prefer to use the full strength method. The
initial curve is given by

x0(a) = a, y0(a) = 0, z0(a) = log(8 + a2),

so that the characteristic ODEs are

dx

ds
= 4x,

dy

ds
= 1,

dz

ds
= 2y,

x(0) = a, y(0) = 0, z(0) = log(8 + a2).

The first equation is an exponential growth equation with solution x = ae4s, and the
second is readily integrated to yield y = s. This means the third becomes dz

ds
= 2s

so that z = s2 + log(8 + a2). To invert the (x, y) − (a, s) system, simply note that
a = xe−4s = xe−4y. Thus

z = u(x, y) = s2 + log(8 + a2) = y2 + log
(
8 + x2e−8y

)
.

Exercise 3. Show that the general solution to uxy + ux = 0 has the form u(x, y) = F (y) +
e−yG(x). [Suggestion: Notice that uxy + ux = (uy + u)x.]



Since 0 = uxy + ux = (uy + u)x, we can integrate at once with respect to x to obtain
uy+u = f(y). This is a first order linear “ODE” in the variable y. Introducing the integrating
factor µ = exp

(∫
1 dy

)
= ey, it becomes

∂

∂y
(eyu) = eyf(y).

Integrating with respect to y this time yields

eyu =

∫
eyf(y) dy +G(x).

Finally, dividing by ey gives

u(x, y) = e−y
∫
eyf(y) dy + e−yG(x) = F (y) + e−yG(x),

where we have replaced the arbitrary function e−y
∫
eyf(y) dy with another we call F for

convenience.

Exercise 4. Solve the wave equation subject to the initial conditions

u(x, 0) = xe−x
2

, ut(x, 0) =
1

1 + x2
, x ∈ R.

According to Exercise of Assignment 2, the solution of the wave equation in this case is
given by

u(x, t) = F (x+ ct) +G(x− ct),
where

F =
xe−x

2

2
+

1

2c

∫
1

1 + x2
dx =

xe−x
2

2
+

1

2c
arctanx,

G =
xe−x

2

2
− 1

2c

∫
1

1 + x2
dx =

xe−x
2

2
− 1

2c
arctanx.

Hence

u(x, t) =
1

2

(
(x+ ct)e−(x+ct)

2

+ (x− ct)e−(x−ct)2
)

+
1

2c
(arctan(x+ ct)− arctan(x− ct)) .

Exercise 5. Suppose we want to find a solution of the (unbounded) wave equation that
consists of a single traveling wave moving to the right with shape given by the graph of f(x).
What initial conditions are required to cause this to happen?

We want the solution to take the form u(x, t) = f(x − ct). This requires ut(x, t) =
−cf ′(x− ct). To obtain the initial conditions we simply set t = 0:

u(x, 0) = f(x),
ut(x, 0) = −cf ′(x).



Exercise 6. This problem concerns the partial differential equation

uxx + 4uxy + 3uyy = 0. (7)

a. If F and G are twice differentiable functions, show that

u(x, y) = F (3x− y) +G(x− y) (8)

is a solution to (7).

We have

ux = 3F ′(3x− y) +G′(x− y) ⇒

{
uxx = 9F ′′(3x− y) +G′′(x− y)

uxy = −3F ′′(3x− y)−G′′(x− y)

and
uy = −F ′(3x− y)−G′(x− y) ⇒ uyy = F ′′(3x− y) +G′′(x− y).

Hence

uxx + 2uxy + 3uyy =(9F ′′(3x− y) +G′′(x− y)) + 4(−3F ′′(3x− y)−G′′(x− y))

+ 3(F ′′(3x− y) +G′′(x− y))

=(9− 12 + 3)F ′′(3x− y) + (1− 4 + 3)G′′(x− y)

=0 + 0 = 0,

as claimed.

b. Use a linear change of variables to show that every solution to (7) has the form (8).

Defining α and β as in (1) and (2), and applying the chain rule six times eventually
leads us to

∂2u

∂x2
= a2

∂2u

∂α2
+ 2ac

∂2u

∂α∂β
+ c2

∂2u

∂β2
,

∂2u

∂x∂y
= ab

∂2u

∂α2
+ (ad+ bc)

∂2u

∂α∂β
+ cd

∂2u

∂β2
,

∂2u

∂y2
= b2

∂2u

∂α2
+ 2bd

∂2u

∂α∂β
+ d2

∂2u

∂β2
.

Substituting these into (7) and collecting common terms we arrive at the new PDE

(a2 + 4ab+ 3b2)
∂2u

∂α2
+ (2ac+ 4ad+ 4bc+ 6bd)

∂2u

∂α∂β
+ (c2 + 4cd+ 3d2)

∂2u

∂β2
= 0.

If we take a = 3, b = −1, c = 1 and d = −1 then ad− bc = −3 + 1 = −2 6= 0 and the
new PDE becomes

−4
∂2u

∂α∂β
= 0 ⇐⇒ ∂2u

∂α∂β
= 0.

Integration with respect to β gives

∂u

∂α
= f(α)



for an arbitrary f and integration with respect to α then gives

u = F (α) +G(β),

where F is an antiderivative of f . Since α = 3x− y and β = x− y, we finally find that

u(x, y) = F (3x− y) +G(x− y),

as desired.

c. Find the solution to (7) that satisfies the initial conditions

u(x, 0) =
x

x2 + 1
and uy(x, 0) = 0 for all x.

Using the general solution obtained in part b, we find that

uy(x, y) = −F ′(3x− y)−G′(x− y).

Hence the initial conditions require that

x

x2 + 1
= u(x, 0) = F (3x) +G(x),

0 = uy(x, 0) = −F ′(3x)−G′(x).

The second equation implies that G′(x) = −F ′(3x) so that G(x) = −F (3x)/3 + C.
Substituting this into the first yields

2

3
F (3x) + C =

x

x2 + 1
⇒ F (x) =

9x

2(x2 + 9)
− 3

2
C.

Thus

G(x) = −1

3
F (3x) + C =

−x
2(x2 + 1)

+
3

2
C.

Hence we finally have

u(x, y) = F (3x− y) +G(x− y) =
9(3x− y)

2((3x− y)2 + 9)
+

y − x
2((x− y)2 + 1)

.

Exercise 7. Show that the functions

cosx, cos 3x, cos 5x, cos 7x, . . . ,

are pairwise orthogononal relative to the inner product 〈f, g〉 =
π/2∫
0

f(x)g(x) dx. [Suggestion:

Use the identity cos(A+B) + cos(A−B) = 2 cosA cosB.]



If m,n ∈ N are both odd (and distinct), then using the given identity we have

〈cosmx, cosnx〉 =

∫ π/2

0

cosmx cosnx dx

=
1

2

∫ π/2

0

cos(m+ n)x+ cos(m− n)x dx

=
1

2

(
sin(m+ n)x

m+ n
+

sin(m− n)x

m− n

∣∣∣∣π/2
0

)

=
1

2

(
sin(m+ n)π/2

m+ n
+

sin(m− n)π/2

m− n
− sin 0

m+ n
− sin 0

m− n

)
=

1

2

(
sin(m+ n)π/2

m+ n
+

sin(m− n)π/2

m− n

)
since sin 0 = 0. Because m and n are both odd, m + n and m − n are both even, so that
m+n
2

= k and m−n
2

= ` are both integers. Hence

sin(m+ n)π/2

m+ n
=

sin kπ

m+ n
= 0

and
sin(m− n)π/2

m+ n
=

sin `π

m+ n
= 0

as well, and the integral evaluates to zero, which is what we needed to show.

Exercise 8. Let

f1(x) = 1,

f2(x) = 2x− 1,

f3(x) = 6x2 − 6x+ 1,

f4(x) = 20x3 − 30x2 + 12x− 1.

a. Verify that the polynomials f1, f2, f3 and f4 are pairwise orthogonal relative to the

inner product 〈f, g〉 =
1∫
0

f(x)g(x) dx.



We have

〈f1, f2〉 =

∫ 1

0

f1(x)f2(x) dx = x2 − x
∣∣∣∣1
0

= 0,

〈f1, f3〉 =

∫ 1

0

f1(x)f3(x) dx = 2x3 − 3x2 + x

∣∣∣∣1
0

= 0,

〈f1, f4〉 =

∫ 1

0

f1(x)f4(x) dx = 5x4 − 10x3 + 6x2 − x
∣∣∣∣1
0

= 0,

〈f2, f3〉 =

∫ 1

0

f2(x)f3(x) dx = 3x4 − 6x3 + 4x2 − x
∣∣∣∣1
0

= 0,

〈f2, f4〉 =

∫ 1

0

f2(x)f4(x) dx = 8x5 − 20x4 + 18x3 − 7x2 + x

∣∣∣∣1
0

= 0,

〈f3, f4〉 =

∫ 1

0

f3(x)f4(x) dx = 20x6 − 60x5 + 68x4 − 36x3 + 9x2 − x
∣∣∣∣1
0

= 0.

b. Let p(x) = x3 − 2. Use part a to write p as a linear combination of f1, f2, f3 and f4.
[Suggestion: Recall that since the fi are orthogonal, if

p = a1f1 + a2f2 + a3f3 + a4f4,

then aj = 〈p, fj〉/〈fj, fj〉.]
According to the stated formulae

a1 =
〈p, f1〉
〈f1, f1〉

=

1∫
0

p(x)f1(x) dx

1∫
0

f1(x)f1(x) dx

= −7

4
,

a2 =
〈p, f2〉
〈f2, f2〉

=

1∫
0

p(x)f2(x) dx

1∫
0

f2(x)f2(x) dx

=
9

20
,

a3 =
〈p, f3〉
〈f3, f3〉

=

1∫
0

p(x)f3(x) dx

1∫
0

f3(x)f3(x) dx

=
1

4
,

a4 =
〈p, f4〉
〈f4, f4〉

=

1∫
0

p(x)f4(x) dx

1∫
0

f4(x)f4(x) dx

=
1

20
,

so that

p = −7

4
f1 +

9

20
f2 +

1

4
f3 +

1

20
f3,

as is easily verified.



c. Explain why the procedure of part b fails if we take p(x) = x5 − 2x+ 1.

Although the coefficients a1, a2, a3 and a4 can still be computed, the linear combination
a1f1 +a2f2 +a3f3 +a4f4 will have degree at most 4 and so cannot equal p, which in this
case has degree 5. The problem is that while the orthogonality of the set {f1, f2, f3, f4}
guarantees its linear independence, it is not a basis for the space of polynomials of
degree at most 5 since it does not have enough vectors, namely 5.

Exercise 9. For each 2π-periodic function f given: i. carefully sketch three periods of f
and ii. carefully sketch three periods of the the Fourier series of f .

a. f(x) =

{
b2x/πc if − π ≤ x < π,

f(x+ 2π) otherwise.

Here’s a sketch of f

and a sketch of its Fourier series

b. f(x) =

{
min{|3x/π|, 1} if − π ≤ x < π,

f(x+ 2π) otherwise.

Here’s a sketch of f



which is identical with its Fourier series since it is continuous everywhere.

c. f(x) =


π/2 if − π ≤ x < 0,

π − x/2 if 0 ≤ x < π,

f(x+ 2π) otherwise.

Here’s a sketch of f

and a sketch of its Fourier series


