Exercise 1. Carefully state the Fourier Series Representation Theorem (for functions of arbitrary period).

Exercise 2. Find the Fourier series for the $2 p$-periodic function given on the interval $[-p, p)$ by

$$
f(x)= \begin{cases}x+p & \text { if }-p \leq x<0 \\ p & \text { if } 0 \leq x<p\end{cases}
$$

Sketch the graph of f and the graph of its Fourier series for 3 periods.

Exercise 3. Sketch the even and odd 6 -periodic extensions (for at least 3 periods) of the function whose graph is shown below.

Exercise 4. Find the sine and cosine series expansions of the function $g(x)=2+x-x^{2}$, $0<x<2$.

Exercise 5. Consider the heat boundary value problem

$$
\begin{array}{ll}
u_{t}=c^{2} u_{x x}, & t>0,0<x<L, \\
u_{x}(0, t)=0, & t>0 \\
u_{x}(L, t)=-\kappa u(L, t), & t>0 \\
u(x, 0)=f(x), & 0<x<L
\end{array}
$$

in which κ is a positive constant.
a. Provide a physical interpretation of this problem.
b. Use separation of variables and superposition to find the solution to this problem.

Exercise 6. Use the series solution $u(x, t)$ of the fixed endpoint vibrating string problem to show that

$$
u(x, t+L / c)=-u(L-x, t)
$$

What does this imply about the shape of the string at half a time period?

Exercise 7. A ideal elastic string of length 4 moves according to the PDE $u_{t t}=4 u_{x x}$. It is initially deformed into the shape of the graph of the function

$$
f(x)= \begin{cases}0 & \text { if } 0<x<1 \\ x-1 & \text { if } 1<x<2 \\ 3-x & \text { if } 2<x<3 \\ 0 & \text { if } 3<x<4\end{cases}
$$

and given a uniform unit downward speed. Determine its position at any later time.

Exercise 8. Obtain the Fourier series for the $2 p$-periodic function given by $f(x)=x(2 p-x)$ for $0 \leq x \leq 2 p$ by translating the Fourier series of Textbook Exercise 2.3.3.

Exercise 9. [Extra Credit] Obtain the Fourier series of Textbook Exercise 2.2.20a by multiplying $h(x)=\sin x$ by an appropriate square wave and simplifying. [Suggested by Regis Noubiap.]

