
Partial Differential Equations Exam 2 Review Solutions
Spring 2018

Exercise 1. Carefully state the Fourier Series Representation Theorem (for functions of
arbitrary period).

Theorem. Let f be a 2p-periodic piecewise smooth function. Then

f(x+) + f(x−)

2
= a0 +

∞∑
n=0

an cos

(
nπx

p

)
+ bn sin

(
nπx

p

)
where

a0 =
1

2p

∫ p

−p
f(x) dx, an =

1

p

∫ p

−p
f(x) cos

(
nπx

p

)
dx, bn =

1

p

∫ p

−p
f(x) sin

(
nπx

p

)
dx.

Exercise 2. Find the Fourier series for the 2p-periodic function given on the interval [−p, p)
by

f(x) =

{
x+ p if − p ≤ x < 0,

p if 0 ≤ x < p.

Sketch the graph of f and the graph of its Fourier series for 3 periods.

Solution. Because the function in question lacks odd/even symmetry, we need to compute
all of its Fourier coefficients manually. We have

a0 =
1

2p

∫ p

−p
f(x) dx =

1

2p

(∫ 0

−p
(x+ p) dx+

∫ p

0

p dx

)
=

1

2p

(
x2

2
+ px

∣∣∣∣0
−p

+ p2

)
=

3p

4
.

an =
1

p

∫ p

−p
f(x) cos

(
nπx

p

)
dx =

1

p

(∫ 0

−p
(x+ p) cos

(
nπx

p

)
dx+

∫ p

0

p cos

(
nπx

p

)
dx

)
=

∫ p

−p
cos

(
nπx

p

)
dx+

1

p

∫ 0

−p
x cos

(
nπx

p

)
dx

=
p

nπ
sin

(
nπx

p

) ∣∣∣∣p
−p

+
1

p

(
px

nπ
sin

(
nπx

p

)
+

p2

n2π2
cos

(
nπx

p

)) ∣∣∣∣0
−p

=
p

n2π2
(1− cos(nπ)) =

p

n2π2
(1− (−1)n).



bn =
1

p

∫ p

−p
f(x) sin

(
nπx

p

)
dx =

1

p

(∫ 0

−p
(x+ p) sin

(
nπx

p

)
dx+

∫ p

0

p sin

(
nπx

p

)
dx

)
=

∫ p

−p
sin

(
nπx

p

)
dx+

1

p

∫ 0

−p
x sin

(
nπx

p

)
dx

= − p

nπ
cos

(
nπx

p

) ∣∣∣∣p
−p

+
1

p

(
px

nπ
cos

(
nπx

p

)
− p2

n2π2
sin

(
nπx

p

)) ∣∣∣∣0
−p

=
(−1)n+1p

nπ

The Fourier series is therefore

3p

4
+
∞∑
n=1

p

n2π2
(1− (−1)n) cos

(
nπx

p

)
+

(−1)n+1p

nπ
sin

(
nπx

p

)
.

Exercise 3. Sketch the even and odd 6-periodic extensions (for at least 3 periods) of the
function whose graph is shown below.

The even extension:

The odd extension:



Exercise 4. Find the sine and cosine series expansions of the function g(x) = 2 + x − x2,
0 < x < 2.

Solution. Once again, there’s no particularly nice symmetry so we just hammer out the
coefficients using Euler’s Formulae. For the cosine expansion we have

a0 =
1

2

∫ 2

0

2 + x− x2 dx =
1

2

(
2x+

x2

2
− x3

3

∣∣∣∣2
0

)
=

5

3

and for n ≥ 1

an =
2

2

∫ 2

0

(2 + x− x2) cos
(nπx

2

)
dx

= (2 + x− x2) 2

nπ
sin
(nπx

2

)
+ (1− 2x)

4

n2π2
cos
(nπx

2

)
+

16

n3π3
sin
(nπx

2

) ∣∣∣∣2
0

=
1

n2π2
(−12 cos(nπ)− 4) =

12(−1)n+1 − 4

n2π2

so that the cosine series for g is

5

3
+
∞∑
n=1

12(−1)n+1 − 4

n2π2
cos
(nπx

2

)
.

The sine series coefficients are given by

bn =
2

2

∫ 2

0

(2 + x− x2) sin
(nπx

2

)
dx

= −(2 + x− x2) 2

nπ
cos
(nπx

2

)
+ (1− 2x)

4

n2π2
sin
(nπx

2

)
− 16

n3π3
cos
(nπx

2

) ∣∣∣∣2
0

= − 16

n3π3
cos(nπ) +

4

nπ
+

16

n3π3
=

16

n3π3
((−1)n+1 + 1) +

4

nπ

which gives the sine expansion

∞∑
n=1

(
16

n3π3
((−1)n+1 + 1) +

4

nπ

)
sin
(nπx

2

)
.



Exercise 5. Consider the heat boundary value problem

ut = c2uxx, t > 0, 0 < x < L,
ux(0, t) = 0, t > 0,
ux(L, t) = −κu(L, t), t > 0,
u(x, 0) = f(x), 0 < x < L

in which κ is a positive constant.

a. Provide a physical interpretation of this problem.

Solution. The function u models the temperature in a perfectly (laterally) insulated
heat conductive rod of length L. It’s left end is also perfectly insulated, while its
right end radiates thermal energy at a rate proportional to its temperature there. The
function f(x) describes the initial temperature throughout the rod.

b. Use separation of variables and superposition to find the solution to this problem.

Solution. We first seek separated solutions of the form u(x, t) = X(x)T (t) satisfying
all of the homogeneous linear requirements, i.e. the first three conditions. Substituting
the separated solution into the PDE yields

XT ′ = c2X ′′T ⇒ X ′′

X
=

T ′

c2T
= k (constant)

since the two sides of the latter equation are functions of distinct independent variables.
This gives us the pair of separated ODEs

X ′′ − kX = 0, T ′ − kc2T = 0.

From the first boundary condition we obtain

X ′(0)T (t) = 0 ⇒ X ′(0) = 0

since we do not want T ≡ 0. The second boundary condition requires that

X ′(L)T (t) = −κX(L)T (t) ⇒ X ′(L) = −κX(L).

We have thus obtained an ODE boundary value problem in X that requires a case
by case analysis of the possible values of k for which there are nontrivial (nonzero)
solutions.

Case 1: k = µ2 > 0. In this situation the ODE for X becomes X ′′ − µ2X = 0 with
characteristic equation r2 − µ2 = 0, whose roots are r = ±µ. The solutions are then
given by

X = c1e
µx + c2e

−µx.

The boundary conditions require that

µ
(
c1e

µ·0 − c2e−µ·0
)

= 0 ⇒ c1 − c2 = 0,

µ
(
c1e

µL − c2e−µL
)

= −κ(c1e
µL + c2e

−µL) ⇒ c1(κ+ µ)eµL + c2(κ− µ)e−µL = 0

or in matrix form (
1 −1

(κ+ µ)eµL (κ− µ)e−µL

)(
c1
c2

)
=

(
0
0

)
.



The determinant of the coefficient matrix is

(κ− µ)e−µL + (κ+ µ)eµL = κ(eµL + e−µL) + µ(eµL − e−µL) > 0,

which means that the only possibility is that c1 = c2 = 0, or in other words X ≡ 0. So
we must move on to the next case.

Case 2: k = 0. Now the ODE in X simplifies to X ′′ = 0 which means that X = ax+ b.
The first boundary condition immediately implies a = 0 and the second then becomes

0 = −κb ⇒ b = 0

which once again tells us that X ≡ 0. So we move on.

Case 2: k = −µ2 < 0. Things finally get interesting. The ODE becomes X ′′+µ2X = 0
whose characteristic equation has roots ±iµ, so that X = c1 cosµx + c2 sinµx. From
the first boundary condition we find

−c1 sin 0 + c2 cos 0 = 0 ⇒ c2 = 0.

The second boundary condition is then

−µc1 sinµL = −κc1 cosµL ⇒ tanµL =
κ

µ
,

since we do not want c1 = 0 at this point. The diagram below illustrates that this
equation has an increasing sequence of positive solutions, which we label

0 < µ1 < µ2 < µ3 < · · ·

Up to the choice of the scalar, these finally give the nontrivial solutions

Xn = cosµnx, n ∈ N.

Since −µ2 = k, for each n ∈ N the ODE for T becomes

T ′ + (cµn)2T = 0 ⇒ T ′ = −(cµn)2T ⇒ T = Tn = cne
−(cµn)2t.

We have finally obtained our separated solutions:

un(x, t) = cne
−(cµn)2t cosµnx, n ∈ N,

where µn is the nth positive solution to tanµL = κ/µ.

Superposition: By the principle of superposition, the function

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

cne
−(cµn)2t cosµnx

is guaranteed to satisfy the homogeneous linear restrictions we have imposed on the
individual summands. Put another way, we’ve solved the given problem, up to the
initial condition, which we now attempt to impose:

f(x) = u(x, 0) =
∞∑
n=1

un(x, t) =
∞∑
n=1

cne
−(cµn)2·0 cosµnx =

∞∑
n=1

cn cosµnx. (1)



One can easily check that the functions cosµnx are pairwise orthogonal on the interval
[0, L]. Moreover, if f is “sufficiently smooth” one can be assured that an expression of
f as a linear combination of these functions of the form (1) is always possible. This is
a consequence of what is known as “Sturm-Liouville Theory,” a subject we may touch
upon later.

In any case, this tells us how to “extract” the coefficients cn of the solution to our
original problem from the intial data f(x): as ratios of inner products. Specifically

cn =
〈f(x), cosµnx〉
〈cosµnx, cosµnx〉

=

∫ L
0
f(x) cosµnx dx∫ L
0

cos2 µnx dx
.

And, up to the evaluation of the integrals, this furnishes the solution.

Exercise 6. Use the series solution u(x, t) of the fixed endpoint vibrating string problem to
show that

u(x, t+ L/c) = −u(L− x, t).
What does this imply about the shape of the string at half a time period?

Solution. This is, more or less, simply an exercise in applying the addition formulae for the
sine and cosine functions. The general solution is given by

u(x, t) =
∞∑
n=1

sin (µnx) (bn cos(λnt) + b∗n sin(λnt)) (2)

where µn = nπ/L and λn = cµn. Rather than drag the entire series through our investigation,
let’s simply look at the relevant terms. Notice that

cos(λn(t+ L/c)) = cos(λnt+ nπ) = cos(λnt) cos(nπ)− sin(λnt) sin(nπ) = (−1)n cos(λnt),

sin(λn(t+ L/c)) = sin(λnt+ nπ) = sin(λnt) cos(nπ) + cos(λnt) sin(nπ) = (−1)n sin(λnt).

Furthermore

sin(µn(L− x)) = sin(nπ − µnx) = sin(nπ) cos(µnx)− sin(µnx) cos(nπ) = (−1)n+1 sin(µnx)

Substituting these results into the solution (2), the conclusion follows immediately.

Exercise 7. A ideal elastic string of length 4 moves according to the PDE utt = 4uxx. It is
initially deformed into the shape of the graph of the function

f(x) =


0 if 0 < x < 1,

x− 1 if 1 < x < 2,

3− x if 2 < x < 3,

0 if 3 < x < 4,

and given a uniform unit downward speed. Determine its position at any later time.



Solution. As stated in the previous exercise, we know the solution to be

u(x, t) =
∞∑
n=1

sin (µnx) (bn cos(λnt) + b∗n sin(λnt))

where the bn are the sine series coefficients of f(x) and the b∗n are “almost” the sine series
coefficients of the initial velocity function, which in this case is g(x) = −1.

We could play various games with existing Fourier series to find the sine expansion of
f(x), but to keep things simple we’ll just defer to Euler’s Formula:

bn =
2

4

∫ 4

0

f(x) sin
(nπx

4

)
dx =

1

2

(∫ 2

1

(x− 1) sin
(nπx

4

)
dx+

∫ 3

2

(3− x) sin
(nπx

4

)
dx

)
=

1

2

(
−(x− 1)

4

nπ
cos
(nπx

4

)
+

16

n2π2
sin
(nπx

4

)) ∣∣∣∣2
1

+
1

2

(
−(3− x)

4

nπ
cos
(nπx

4

)
− 16

n2π2
sin
(nπx

4

)) ∣∣∣∣3
2

=
16 sin

(
nπ
2

)
− 8 sin

(
nπ
4

)
− 8 sin

(
3nπ
4

)
n2π2

Fortunately the b∗n coefficients are much easier to obtain. The sine expansion of g(x) = −1
on the interval 0 < x < 4 is simply the negation of Exercise 2.3.1, with p = 4. That is,

− 4

π

∞∑
k=0

1

2k + 1
sin

(
(2k + 1)πx

4

)
Therefore we only need the odd indexed modes and have

b∗2k+1 =
1

λ2k+1

(
− 4

π(2k + 1)

)
=

L

c(2k + 1)π

(
−4

π(2k + 1)

)
=

−2L

π2(2k + 1)2
.

We conclude that the shape of the string at any time is given by

u(x, t) =
∞∑
n=1

(
16 sin

(
nπ
2

)
− 8 sin

(
nπ
4

)
− 8 sin

(
3nπ
4

)
n2π2

)
sin
(nπx

4

)
cos

(
nπt

2

)
+
∞∑
k=0

−2L

π2(2k + 1)2
sin

(
(2k + 1)πx

4

)
cos

(
(2k + 1)πx

2

)
.

Exercise 8. Obtain the Fourier series for the 2p-periodic function given by f(x) = x(2p−x)
for 0 ≤ x ≤ 2p by translating the Fourier series of Textbook Exercise 2.3.3.

Solution. The function f(x), on the interval [0, 2p], is a downward opening parabola with
roots at x = 0 and x = 2p. Its maximum value on this interval occurs in the center, when
x = p, which is f(p) = p2. This is precisely the function of Exercise 2.3.3 with a = p2,



shifted to the right by p units. Using the Fourier series given there we therefore obtain the
translated series

2p2

3
+4p2

∞∑
n=1

(−1)n+1

n2π2
cos

(
nπ(x− p)

p

)
=

2p2

3
+ 4p2

∞∑
n=1

(−1)n+1

n2π2

(
cos

(
nπx

p

)
cos (nπ) + sin

(
nπx

p

)
sin (nπ)

)
=

2p2

3
+ 4p2

∞∑
n=1

(−1)n+1

n2π2
cos

(
nπx

p

)
(−1)n

=
2p2

3
− 4p2

∞∑
n=1

1

n2π2
cos

(
nπx

p

)
.

Exercise 9. [Extra Credit] Obtain the Fourier series of Textbook Exercise 2.2.20a by mul-
tiplying h(x) = sin x by an appropriate square wave and simplifying. [Suggested by Regis
Noubiap.]


