
Partial Differential Equations Exam 3 Review Exercises
Spring 2018

Exercise 1. An ideal elastic membrane with dimensions 1×1 and c = 2 is initially deformed
into the shape of the graph of the function f(x, y) = 100(1 − x − y)x(1 − x)y(1 − y) and
imparted with a velocity given at each point by g(x, y) = x− y. Determine the shape of the
membrane at any later time t.

Solution. We need the double Fourier series coefficients for f and g. These are given by

Bmn =
4

1 · 1

∫ 1

0

∫ 1

0

100(1− x− y)x(1− x)y(1− y) sin(mπx) sin(nπy) dy dx

= 400

(
12(1− (−1)m+n)

π6m3n3

)
=

4800

π6

(
(1− (−1)m+n)

m3n3

)
,

B′mn =
4

1 · 1

∫ 1

0

∫ 1

0

(x− y) sin(mπx) sin(nπy) dy dx

=
(−1)n − (−1)m

π2mn
.

Since λmn = cπ
√
m2 + n2, we find that

B∗mn =
(−1)n − (−1)m

π3cmn
√
m2 + n2

.

Hence the shape of the membrane is given by

u(x, y, t) =
∞∑
m=1

∞∑
n=1

(
4800

π6

(
(1− (−1)m+n)

m3n3

)
cos
(
cπ
√
m2 + n2 t

)
+

(−1)n − (−1)m

π3cmn
√
m2 + n2

sin
(
cπ
√
m2 + n2 t

))
sin(mπx) sin(nπy).

Exercise 2. A thin rectangular a×b metal plate with insulated faces has one pair of opposite
edges held constantly at 0◦ while the other pair of opposite edges is insulated. If the plate
is initially heated so as to have temperature f(x, y) at each point throughout its interior,
determine the temperature at any later time.

Solution. Let’s assume the bottom and top edges are being held at 0◦, while the left and



right edges are those that are insulated. This gives us the boundary value problem

ut = c2(uxx + uyy), 0 < x < a, 0 < y < b, t > 0,

u(x, 0, t) = u(x, b, t) = 0, 0 < x < a, t > 0,

ux(0, y, t) = ux(a, y, t) = 0, 0 < y < b, t > 0,

u(x, y, 0) = f(x, y), 0 < x < a, 0 < y < b.

Since this is a boundary value problem we haven’t encountered before, we need to separate
variables, superimpose, and apply orthogonality.

We begin by assuming u(x, y, t) = X(x)Y (y)T (t) and imposing all of the homogeneous
conditions of the problem on u, i.e. all but the last. Plugging in to the heat equation we
obtain

XY T ′ = c2(X ′′Y T +XY ′′T ) ⇒ T ′

c2T
=
X ′′

X
+
Y ′′

Y
= A (constant),

since the two sides of the final equation are functions of distinct independent variables.
Moving the Y term to the other side yields

X ′′

X
= A− Y ′′

Y
= B (constant)

by similar reasoning. If we let C = A−B we find that we have the three separated ODEs

T ′ = c2(B + C)T,

X ′′ −BX = 0,

Y ′′ − CY = 0.

The homogeneous boundary conditions on u imply that we must also have

X ′(0) = X ′(a) = 0,

Y (0) = Y (b) = 0.

We previously solved both the X and Y boundary value problems. In the context of the
fixed length vibrating string, we found that

Y = Yn = sin(νny), C = −ν2n, νn =
nπ

b
, n ∈ N,

and in the one-dimensional insulated ends heat problem we found that

X = Xm = cos(µmx), B = −µ2
m, µm =

mπ

a
, m ∈ N0.

Using these values for B and C, the ODE for T becomes

T ′ = −c2(µ2
m + ν2n)T ⇒ T = Tmn = cmne

−c2(µ2m+ν2n)t.

We conclude that the normal modes for this particular heat problem are

umn(x, y, t) = Xm(x)Yn(y)Tmn(t) = cmn cos(µmx) sin(νny)e−c
2(µ2m+ν2n)t, (m,n) ∈ N0 × N,

where µm, νn are as above.



Superposition gives the general solution

u(x, y, t) =
∞∑
m=0

∞∑
n=1

cmn cos(µmx) sin(νny)e−c
2(µ2m+ν2n)t , (1)

which still satisfies all of the homogeneous components of the boundary value problem. But
because it is more flexible than the individual modes, we are in a position to finally impose
the remaining initial condition:

f(x, y) = u(x, y, 0) =
∞∑
m=0

∞∑
n=1

cmn cos(µmx) sin(νny).

This is another type of double Fourier series. It is a linear combination of the functions
Wmn(x, y) = cos(µmx) sin(νny) which one can readily show are orthogonal relative to the
inner product

〈g, h〉 =

∫ a

0

∫ b

0

g(x, y)h(x, y) dy dx.

Consequently we can extract the Fourier coefficients as ratios of inner products:

cmn =
〈f,Wmn〉
〈Wmn,Wmn〉

.

Writing the inner products as integrals and evaluating the denominator one finds that

cmn =
4

ab

∫ a

0

∫ b

0

f(x, y) cos(µmx) sin(νny) dy dx, m 6= 0 ,

whereas

c0n =
2

ab

∫ a

0

∫ b

0

f(x, y) sin(νny) dy dx .

Together with (1), these give the complete solution to the problem.

Exercise 3. Solve the Dirichlet problem on the interior of a 2× 1 rectangle subject to the
boundary conditions u(x, 0) = x2, u(2, y) = 4− y, u(x, 1) = 5− x, u(0, y) = 5y.

Solution. We need the half-range sine expansion of each edge condition. Unfortunately,
with only one exception, these aren’t expansions we’ve derived before. So we integrate:

an =
2

2

∫ 2

0

x2 sin
(nπx

2

)
dx =

8 (π2n2(−1)n+1 − 2 + 2(−1)n)

π3n3
,

bn =
2

2

∫ 2

0

(5− x) sin
(nπx

2

)
dx =

2 (5 + 3(−1)n+1)

πn
,

cn =
2

1

∫ 1

0

5y sin(nπy) dy =
10(−1)n+1

πn
,

dn =
2

1

∫ 1

0

(4− y) sin(nπy) dy =
2 (4 + 3(−1)n+1)

πn
.



Now recall that the coefficients in the solution to the Dirichlet problem are given by

An =
an

sinh (nπ/2)
, Bn =

bn
sinh (nπ/2)

, Cn =
cn

sinh(2nπ)
, Dn =

dn
sinh(2nπ)

(here and below we are simply invoking the solution given on pp 167–168 of our textbook,
with a = 2 and b = 1). It follows that the solution is

u(x, y) =
∞∑
n=1

8 (π2n2(−1)n+1 − 2 + 2(−1)n)

π3n3 sinh (nπ/2)
sin
(nπx

2

)
sinh

(
nπ(1− y)

2

)
+
∞∑
n=1

2 (5 + 3(−1)n+1)

πn sinh (nπ/2)
sin
(nπx

2

)
sinh

(nπy
2

)
+
∞∑
n=1

10(−1)n+1

πn sinh(2nπ)
sinh(nπ(2− x)) sin(nπy)

+
∞∑
n=1

2 (4 + 3(−1)n+1)

πn sinh(2nπ)
sinh(nπx) sin(nπy).

Exercise 4. Show that the function

f(x, y) =
x3 − 3xy2

(x2 + y2)3

is harmonic.

Solution. We must show that ∆f = 0. This is most easily done in polar coordinates, where
f becomes

f(r, θ) =
r3 cos3 θ − 3r cos θr2 sin2 θ

r6
=

cos3 θ − 3 cos θ(1− cos2 θ)

r3
=

4 cos3 θ − 3 cos θ

r3
.

The r partial derivatives are trivial to compute:

fr =
−12 cos3 θ + 9 cos θ

r4
,

frr =
48 cos3 θ − 36 cos θ

r5
.

The θ partials aren’t much harder, as long as we use the basic identity cos2θ + sin2 θ = 1 to
stick to a single trigonometric function. Indeed, we have

fθ =
−12 cos2 θ sin θ + 3 sin θ

r3
=
−12(1− sin2 θ) sin θ + 3 sin θ

r3
=

12 sin3 θ − 9 sin θ

r3
,

fθθ =
36 sin2 θ cos θ − 9 cos θ

r3
=

36(1− cos2 θ) cos θ − 9 cos θ

r3
=
−36 cos3 θ + 27 cos θ

r3
.



Consequently we find that

∆f = frr +
1

r
fr +

1

r2
fθθ

=
48 cos3 θ − 36 cos θ

r5
+

1

r
· −12 cos3 θ + 9 cos θ

r4
+

1

r2
· −36 cos3 θ + 27 cos θ

r3

= 0,

as needed.

Exercise 5. A thin circular metal disk of radius 3 with insulated faces has the tempera-
ture along its edge held at 0◦ in the first quadrant, 50◦ in the second quadrant, 0◦ in the
third quadrant and 25◦ in the fourth quadrant. Find the resulting steady-state temperature
distribution throughout the disk.

Solution. We need the Fourier series for the 2π-periodic function given on [0, 2π) by

f(θ) =


0 if 0 ≤ θ < π/2,

50 if π/2 ≤ θ < π,

0 if π ≤ θ < 3π/2,

25 if 3π/2 ≤ θ < 2π.

We have

a0 =
1

2π

∫ 2π

0

f(θ) dθ =
1

2π

(
50 · π

2
+ 25 · π

2

)
=

75

4

and for n ≥ 1

an =
1

π

∫ 2π

0

f(θ) cos(nθ) dθ =
1

nπ

(
−50 sin

(nπ
2

)
− 25 sin

(
3nπ

2

))
,

bn =
1

π

∫ 2π

0

f(θ) cos(nθ) dθ =
1

nπ

(
50
(

cos
(nπ

2

)
− (−1)n

)
+ 25

(
cos

(
3nπ

2

)
− 1

))
.

Therefore the solution to the steady-state heat problem (a Dirichlet problem in this case) is

u(r, θ) =
75

4
+

1

π

∞∑
n=1

(r
3

)n 1

n

((
−50 sin

(nπ
2

)
− 25 sin

(
3nπ

2

))
cos(nθ)

+

(
50
(

cos
(nπ

2

)
− (−1)n

)
+ 25

(
cos

(
3nπ

2

)
− 1

))
sin(nθ)

)
.

Exercise 6. Show that
f(x) =

x

x2 + x− 2
is analytic at a = 0. [Suggestion: First find the partial fraction decomposition of f .]

Solution. We have the partial fraction decomposition

f(x) =
x

x2 + x− 2
=

x

(x+ 2)(x− 1)
=

1/3

x− 1
+

2/3

x+ 2
.



Moreover,
1

x− 1
= − 1

1− x
= −

∞∑
n=0

xn for |x| < 1

and
1

x+ 2
=

1

2
· 1

1− (−x/2)
=

1

2

∞∑
n=0

(
−x

2

)n
for |x/2| < 1.

Thus, on the smaller of the two intervals of convergence, namely |x| < 1, we have

f(x) =
1

3
· 1

x− 1
+

2

3
· 1

x+ 2

= −1

3

∞∑
n=0

xn +
2

3
· 1

2

∞∑
n=0

(
−x

2

)n
=
∞∑
n=0

(
−1

3
+

(−1)n

3 · 2n

)
xn.

Since this series converges for |x| < 1, it has radius at least 1 (it turns out to have radius
exactly 1, although we don’t need this fact), and since it agrees with f on that same interval,
this shows f is analytic at a = 0.

Exercise 7. Show that a = 0 is an ordinary point of the second order ODE

(2 + x2)y′′ − xy′ − 3y = 0. (2)

Find the recursion relation satisfied by the coefficients of the power series expansion centered
at a = 0 of any solution to (2), and give a lower bound on its radius of convergence. Find
explicit expressions for the coefficients in each of two linearly independent solutions and
compute their radii of convergence exactly.

Solution. Putting (2) in standard form we have

y′′ − x

2 + x2
y′ − 3

2 + x2
y = 0.

Utilizing the sum of the geometric series we find that

−x
2 + x2

=
−x
2
· 1

1− (−x2/2)
=
−x
2

∞∑
n=0

(
−x

2

2

)n
=
∞∑
n=0

(−1)n+1

2n+1
x2n+1

and

− 3

2 + x2
= −3

2
· 1

1− (−x2/2)
= −3

2

∞∑
n=0

(
−x

2

2

)n
=
∞∑
n=0

3(−1)n+1

2n+1
x2n

for |x2/2| < 1 or, equivalently, |x| <
√

2. Hence the coefficient functions are analytic at
a = 0 and therefore a = 0 is an ordinary point of (2). In particular, every solution to (2) is
analytic at a = 0 with radius at least

√
2.



We can therefore write

y =
∞∑
n=0

anx
n

and substitute this expression into (2). Distributing, reindexing and collecting common
powers of xn lead to the recursion

an+2 = − (n− 3)

2(n+ 2)
an, n ≥ 0.

Choosing a0 = 1 and a1 = 0 leads to a2k+1 = 0 for all k ≥ 0 and

a2 =
3

4
, a4 =

3

32
, a2k =

(
2k − 3

k

)
3(−1)k

23(k−1)(2k − 3)(2k − 4)
for k ≥ 3.

This give us our first fundamental solution

y1 = 1 +
3

4
x2 +

3

32
x4 +

∞∑
k=3

(
2k − 3

k

)
3(−1)kx2k

23(k−1)(2k − 3)(2k − 4)
.

To obtain the other fundamental solution we set a0 = 0 and a1 = 1. The first of these
tells us that a2k = 0 for all k ≥ 0 and the second that

a3 =
1

3
, a5 = 0 ⇒ a2k+1 = 0 for k ≥ 2.

Hence the second fundamental solution is the polynomial

y2 = x+
1

3
x3 .

Because it is a polynomial, which is defined for all x, y2 has an infinite radius of conver-
gence. As for y1, we cannot appeal to either of the tests mentioned in class since every other
coefficient is 0 (as the series includes only even powers of x). So we just use the generic ratio
test applied to the terms of y1. This gives us

lim
k→∞

∣∣∣∣(2(k + 1)− 3

k + 1

)
3(−1)k+1x2k+2

23k(2(k + 1)− 3)(2(k + 1)− 4)

/(
2k − 3

k

)
3(−1)kx2k

23(k−1)(2k − 3)(2k − 4)

∣∣∣∣ =

lim
k→∞

(
2k − 1

k + 1

)/(
2k − 3

k

)
· |x|

2(2k − 3)(2k − 4)

8(2k − 1)(2k − 2)
=
|x|2

8
lim
k→∞

(2k − 1)!k!(k − 3)!

(k + 1)!(k − 2)!(2k − 3)!
=

|x|2

8
lim
k→∞

(2k − 1)(2k − 2)

(k + 1)(k − 2)
=
|x|2

2
.

The series for y1 therefore converges if |x|2/2 < 1 and diverges if |x|2/2 > 1, which means
that its radius of convergence is exactly

√
2.

Exercise 8. Find the two values of r for which

2x2y′′ + 3xy′ + (2x2 − 1)y = 0



has solutions of the form

y = xr
∞∑
n=0

anx
n, a0 6= 0,

in which the power series has positive radius of convergence. For each value of r find the
recursion relation satisfied by the coefficients an and (assuming a0 = 1) the first 5 terms in
the series. If possible, find a general expression for an in each case.

Solution. Writing

y =
∞∑
n=0

anx
n+r,

substituting this expression into the ODE, distributing, reindexing and collecting common
powers of x yields the three equations

(2r(r − 1) + 3r − 1)a0 = 0,

(2(r + 1)r + 3(r + 1)− 1)a1 = 0,

(2(n+ r)(n+ r − 1) + 3(n+ r)− 1) an + 2an−2 = 0, for n ≥ 2.

Because a0 6= 0 the first of these is equivalent to r(r − 1) + 3r − 1 = 0 or 2r2 + r − 1 =

(2r − 1)(r + 1) = 0. Hence r = −1, 1/2 . If r = −1, the second equation becomes −a1 = 0

which means a1 = 0. On the other hand, if r = 1/2, it becomes 5a1 = 0, again implying
that a1 = 0. So, in both cases we have a1 = 0. Solving the third equation for an gives us the
recursion

an =
−2

2(n+ r)(n+ r − 1) + 3(n+ r)− 1
an−2 for n ≥ 2.

Note that since a1 = 0, this tells us that a3 = a5 = a7 = · · · = a2k+1 = 0 for either value of
r.

When r = −1 the recursion simplifies to

an =
−2

n(2n− 3)
an−2 for n ≥ 2.

After computing the first few terms directly we quickly see that if a0 = 1, then

a2k =
(−1)k

k! · 1 · 5 · 9 · · · (4k − 3)
for k ≥ 1.

We therefore arrive at our first solution:

y1 = x−1

(
1 +

∞∑
k=1

(−1)kx2k

k! · 1 · 5 · 9 · · · (4k − 3)

)
.

It is not difficult to use the Ratio Test to show that the power series portion of the solution
has an infinite radius of convergence and therefore that y1 is defined for all x 6= 0.

When r = 1/2 the recursion instead becomes

an =
−2

n(2n+ 3)
an−2 for n ≥ 2.



which, with a0 = 1, eventually leads to the general expression

a2k =
(−1)k

k! · 7 · 11 · 15 · · · (4k + 3)
for k ≥ 1.

This gives us

y2 = x1/2

(
1 +

∞∑
k=1

(−1)kx2k

k! · 7 · 11 · 15 · · · (4k + 3)

)
.

Again, the power series factor converges for all x, but
√
x is only differentiable for x > 0, so

this is the domain of y2.

The functions y1 and y2 are actually quite interesting. Just for fun, they are shown below,
plotted on the interval (0, 30]. Can you identify which is which?


