
Partial Differential Equations Final Exam
Spring 2018 Review Solutions

Exercise 1. If (a, b) 6= (0, 0), find the general solution to the PDE

a
∂u

∂x
+ b

∂u

∂y
= u.

Show that every nonzero solution is unbounded. [Suggestion: The “usual” approach will
work, but try recognizing the LHS as a directional derivative.]

Solution. We first proceed in the usual manner, with a linear change of variables:

α = mx+ ny,

β = rx+ sy,

with ms− nr 6= 0 (we’ve avoided using the typical a, b, c and d since the first two variables
are already taken). As we have seen multiple times, the chain rule tells us that

ux = muα + ruβ,

uy = nuα + suβ,

and the original PDE becomes

(am+ bn)uα + (ar + bs)uβ = u.

There are any number of choices to make for m,n, r, s, but we’ll go with r = −b, s = a, m = a
and n = b. Then am+bn = a2+b2 6= 0, ar+bs = a(−b)+ba = 0, and ms−nr = a2+b2 6= 0.
This is therefore a valid change of variables and yields

(a2 + b2)uα = u ⇒ uα =
1

a2 + b2
u.

In α, this is an exponential growth equation with solution

u = C(β) exp

(
α

a2 + b2

)
.

Back substitution gives

u(x, y) = C(−bx+ ay) exp

(
ax+ by

a2 + b2

)
.

If u is nonzero, there must be a point (x0, y0) so that C(−bx0 + ay0) 6= 0. Now consider
u along the line

y = y0 +
b

a
(x− x0).



After some simplification we have

u

(
x, y0 +

b

a
(x− x0

)
= C(−bx0 + ay0) exp

(
(ay0 − bx0)b

a

)
ex/a = A(x0, y0)e

x/a,

with A(x0, y0) 6= 0. This grows exponentially in x if a > 0 and grows exponentially in −x if
a < 0. So u is unbounded.

This, of course, assumes a 6= 0. If a = 0 we have

u(x, y) = C(−bx)ey/b,

and a similar argument shows that u grows exponentially in either the y or −y direction.

Exercise 2. Solve the initial value problem

x
∂u

∂x
+ (t+ 1)

∂u

∂t
= u, t > 0,

u(x, 0) = f(x).

Solution. We employ the method of characteristics. We begin by parametrizing the initial
curve by

x(a) = a, t(a) = 0, z(a) = f(a).

The characteristic equations of the PDE are then

dx

ds
= x,

dt

ds
= t+ 1,

dz

ds
= z,

x(0) = a, t(0) = 0, z(0) = f(a).

The first and last equations are exponential, with solutions

x(s) = aes, z(s) = f(a)es.

The equation in t is linear. After rewriting it as

dt

ds
− t = 1,

we introduce the integrating factor µ = e−s, which transforms it into

d

dt
(te−s) = e−s ⇒ te−s = −e−s + C ⇒ t = −1 + Ces.

The initial condition t(0) = 0 implies C = 1 so that we have

t(s) = −1 + es.

Now we need to express a and s in terms of x and t. From the equation for t we have

es = t+ 1



so that the expression for x gives

a = xe−s =
x

t+ 1
.

Plugging these results into the formula for z gives us

u(x, t) = z = f

(
x

t+ 1

)
(t+ 1) .

Exercise 3. Find the Fourier series for the 2p-periodic function given on the interval [0, 2p)
by

f(x) =

{
x if 0 ≤ x < p,

(x− p)2 if p ≤ x < 2p.

Carefully sketch both the graph of this function and the graph of its Fourier series, for several
periods.

Solution. The graph of the function is shown below, in the case p = 2.

Here is the graph of its Fourier series (the open circles should really be closed):



The function in question is neither even nor odd, so we need to work out both sets of
Fourier coefficients. We appeal to Euler’s formulae, using the interval [0, 2p) rather than
[−p, p) for convenience.

a0 =
1

2p

(∫ p

0

x dx+

∫ 2p

p

(x− p)2 dx
)

=
2p2 + 3p

12
,

an =
1

p

(∫ p

0

x cos

(
nπx

p

)
dx+

∫ 2p

p

(x− p)2 cos

(
nπx

p

)
dx

)
=
p ((−1)n + 2 p− 1)

n2π2
,

bn =
1

p

(∫ p

0

x sin

(
nπx

p

)
dx+

∫ 2p

p

(x− p)2 sin

(
nπx

p

)
dx

)
= −p ((n2π2 + 2 p) (−1)n + p (n2π2 − 2))

n3π3
.

This gives us the Fourier series

2p2 + 3p

12
+
∞∑
n=1

(
p ((−1)n + 2 p− 1)

n2π2

)
cos

(
nπx

p

)
+

(
−p ((n2π2 + 2 p) (−1)n + p (n2π2 − 2))

n3π3

)
sin

(
nπx

p

)
.

Exercise 4. Let g be defined on the interval [0, 3] by

g(x) =

{
2 if 0 ≤ x < 1,

3− x if 1 ≤ x ≤ 3.

a. Sketch the even and odd 6-periodic extensions of g, for several periods.

Solution. Here’s the graph of the even extension, for 3 periods:

And here’s the graph of the odd extension, for 3 periods:



b. Find the sine series expansion of g.

Solution. The sine coefficients are given by

an =
2

3

∫ 3

0

g(x) sin
(nπx

3

)
dx =

4

nπ
+

6 sin
(
nπ
3

)
n2π2

.

Therefore the sine series is

∞∑
n=1

(
4

nπ
+

6 sin
(
nπ
3

)
n2π2

)
sin
(nπx

3

)
.

c. Find the cosine series expansion of g.

Solution. The cosine coefficients are given by

a0 =
1

3

∫ 3

0

g(x) dx =
4

3
,

an =
2

3

∫ 3

0

g(x) cos
(nπx

3

)
dx =

6 cos
(
nπ
3

)
+ 6 (−1)1+n

n2π2
.

which gives us the cosine series

4

3
+
∞∑
n=1

(
6 cos

(
nπ
3

)
+ 6 (−1)1+n

n2π2

)
cos
(nπx

3

)
.

d. How are parts a, b and c related?

Solution. The sine series expansion of g is simply the Fourier series of its 6-periodic
odd extension, whereas the cosine series is the Fourier series of the 6-periodic even
extension.

Exercise 5. An ideal elastic string of length L is fixed at its right end, but its left end
is attached to a ring that is free to slide up and down a vertical pole. One can show that



under these assumptions the tangent line to the free end will always be horizontal. Separate
variables and describe the motion of the string at any time t > 0, given any initial shape
and (vertical) velocity.

Solution. Positioning the string along the interval [0, L] of the x-axis, we need to solve the
boundary value problem

utt = c2uxx, 0 < x < L, t > 0,

ux(0, t) = u(L, t) = 0, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L.

We begin by separating variables. Assumer u(x, t) = X(x)T (t). Then u solves the wave
equation if and only if XT ′′ = c2X ′′T or

T ′′

c2T
=
X ′′

X
= k,

a constant, since the two halves of the equation are functions of distinct independent vari-
ables. This yields the ODEs

X ′′ − kX = 0,

T ′′ − kc2T = 0.

The (homogeneous) boundary conditions imply that

0 = ux(0, t) = X ′(0)T (t) ⇒ X ′(0) = 0,

0 = u(L, t) = X(L)T (t) ⇒ X(L) = 0,

since we do not want T ≡ 0. As this yields a boundary value problem in X that we haven’t
solved before, we must analyze the sign of the separation constant on a case-by-case basis.

• k = 0. In this situation the ODE for X becomes X ′′ = 0 implying X = ax + b. The
boundary conditions then tell us that

0 = X ′(0) = a,

0 = X(L) = aL+ b = b,

so that X ≡ 0. We may therefore disregard this case.

• k = µ2 > 0. Here ODE in X becomes X ′′−µ2X = 0, which has characteristic equation
r2−µ2 = 0 with roots r = ±µ. Therefore X = a cosh(µx)+b sinh(µx) and the boundary
conditions tell us that

0 = X ′(0) = µ(a sinh 0 + b cosh 0) = µb ⇒ b = 0,

0 = X(L) = a cosh(µL) + b sinh(µL) = a cosh(µL) = 0 ⇒ a = 0,

since cosh never vanishes. Once again we conclude that X ≡ 0 and move on.

• k = −µ2 < 0. We now have X ′′ + µ2X = 0 whose characteristic equation has roots
r = ±iµ. Thus X = a cos(µx) + b sin(µx). Now the boundary conditions imply

0 = X ′(0) = µ(a− sin 0 + b cos 0) = µb ⇒ b = 0,

0 = X(L) = a cos(µL) + b sin(µL) = a cos(µL) = 0 ⇒ cos(µL) = 0,



since we do not want X ≡ 0. This means

µL = (2m+ 1)
π

2
⇒ µ = µm =

(2m+ 1)π

2L
, m ∈ Z

and therefore (taking a = 1)

X = Xm = cos

(
(2m+ 1)πx

2L

)
, m ∈ N0,

where we have discarded the negative values of m since cosine is an even function.

Returning to T , whose equation is now T ′′ + c2µ2
mT = 0 with characteristic roots

r = ±icµm, we have

T = Tm = am cos(cµmt) + bm sin(cµmt).

We therefore have the normal modes

um = XmTm = cos

(
(2m+ 1)πx

2L

)
(am cos(cµmt) + bm sin(cµmt)) ,

where

µm =
(2m+ 1)π

2L
, m ∈ N0.

Superposition gives the general solution

u(x, t) =
∞∑
m=0

um(x, t) =
∞∑
m=0

cos

(
(2m+ 1)πx

2L

)
(am cos(cµmt) + bm sin(cµmt)) .

Imposing the two initial conditions tells us that

f(x) = u(x, 0) =
∞∑
m=0

am cos

(
(2m+ 1)πx

2L

)
,

g(x) = ut(x, 0) =
∞∑
m=0

µmbm cos

(
(2m+ 1)πx

2L

)
.

it is easy to verify that the functions cos(µmx) are orthogonal on the interval [0, L], that is

〈cos(µmx), cos(µnx)〉 =

∫ L

0

cos(µmx) cos(µnx) dx = 0.

Hence we may extract the coefficients of both series as ratios of inner products:

am =
〈f(x), cos(µmx)〉
〈cos(µmx), cos(µmx)〉

=
2

L

∫ L

0

f(x) cos

(
(2m+ 1)πx

L

)
dx,

µmbm =
〈g(x), cos(µmx)〉

〈cos(µmx), cos(µmx)〉
⇒ bm =

2

µmL

∫ L

0

g(x) cos

(
(2m+ 1)πx

L

)
dx.



This gives the complete solution to the problem at hand.

Exercise 6. A thin, perfectly insulated, wire is bent into the shape of a circle of radius a.

a. Assuming the temperature, u, in the wire at any point obeys the one-dimensional heat
equation (with respect to arc length), show that, in terms of the polar coordinate angle
θ, the temperature at any point on the wire satisfies

ut =
( c
a

)2
uθθ.

Solution. If we center the circle at the origin and let x denotes the arc length of a
segment of the circle measured counterclockwise from the horizontal axis, then x = aθ.
The chain rule readily tells us that

uxx =
1

a2
uθθ

so that the usual heat equation ut = c2uxx becomes

ut =
( c
a

)2
uθθ,

as claimed.

b. Assuming a given initial temperature distribution f(θ) around the ring, separate vari-
ables and find an expression for the temperature at any point in the ring at any later
time.

Solution. We write u(θ, t) = Θ(θ)T (t) and plug into the modified PDE to get

ΘT ′ =
( c
a

)2
Θ′′T ⇒ Θ′′

a2Θ
=

T ′

c2T
= k,

or, equivalently,

Θ′′ − a2kΘ = 0,

T ′ − c2kT = 0.

Because the temperature at any point on the circle has to remain the same after we’ve made
one complete revolution, we have the “boundary condition” that Θ must be 2π-periodic. In
order to achieve periodicity in general this requires

−a2k > 0.

Since this forces k < 0, we write k = −µ2 so that the ODE in Θ is Θ′′ + a2µ2Θ and

Θ = A cos(aµθ) +B sin(aµθ).

One can show that the only way this can have period 2π is if aµ = n for some n ∈ Z, or

µ = µn =
n

a
⇒ Θ = Θn = An cos(nθ) +Bn sin(nθ), n ∈ N0,



since we can use the symmetry properties of sine and cosine to absorb the sign of n into the
constants.

Returning to T , for each n ∈ N0 we have the equation

T ′ + c2µ2
nT = 0 ⇒ T ′ = −c2µ2

nT T = Tn = e−c
2µ2nt = e−c

2n2t/a2 ,

where we have taken the multiplicative constant to be 1 for convenience. This gives us the
normal modes

un(x, t) = XnTn = e−c
2n2t/a2 (An cos(nθ) +Bn sin(nθ)) .

Note that when n = 0 we simply have

u0(x, t) = A0.

Hence superposition yields the general solution

u(x, t) = A0 +
∞∑
n=1

e−c
2n2t/a2 (An cos(nθ) +Bn sin(nθ)) .

Finally, to determine An and Bn we impose the initial condition

f(θ) = u(θ, 0) = A0 +
∞∑
n=1

An cos(nθ) +Bn sin(nθ),

which is simply the 2π-periodic Fourier series for f . According to Euler’s formulae

A0 =
1

2π

∫ 2π

0

f(θ) dθ,

An =
1

π

∫ 2π

0

f(θ) cos(nθ) dθ,

Bn =
1

π

∫ 2π

0

f(θ) sin(nθ) dθ,

completing the solution.

Exercise 7. Solve the following boundary value problem on an a× b rectangle:

∆u = 0, 0 < x < a, 0 < y < b,

u(0, y) = u(a, y) = 0, 0 < y < b,

uy(x, 0) = −3u(x, 0), 0 < x < a,

uy(x, b) = f(x), 0 < x < a.

Provide a physical interpretation of the solution.

Solution. The function u represents the steady-state temperature that results in a laterally
insulated rectangular metal plate when the temperatures on the left and right edges are held



constantly at 0◦, the top edge is subject to a (temporally) constant heat flux at each point,
and the bottom edge radiates heat at a rate proportional to the current temperature there.

To solve the problem we, perhaps not surprisingly, separate variables. Writing u(x, y) =
X(x)Y (y) the Laplace equation ∆u = 0 becomes X ′′Y +XY ′′ = 0 or, after dividing by XY ,

X ′′

X
+
Y ′′

Y
= 0 ⇒ X ′′

X
= −Y

′′

Y
= k,

since the two sides of the latter equation are functions of distinct independent variables.
This gives the pair of ODEs

X ′′ − kX = 0,

Y ′′ + kY = 0.

The homogeneous boundary conditions yield

0 = u(0, y) = X(0)Y (y) ⇒ X(0) = 0,

0 = u(a, y) = X(a)Y (y) ⇒ X(a) = 0,

0 = uy(x, 0) + 3u(x, 0) = X(x)Y ′(0) + 3X(x)Y (0) ⇒ Y ′(0) + 3Y (0) = 0,

since we do not want X ≡ 0 or Y ≡ 0.

We’ve solved the boundary value problem in X numerous times. The solutions are

X = Xn = sin(µnx), n ∈ N,

where µn = nπ/a and k = −µ2
n. Returning to Y yields the ODE Y ′′−µ2

nY = 0 with solutions

Yn = An cosh(µny) +Bn sinh(µny).

Imposing the condition Y ′(0) + 3Y (0) = 0 this becomes

µnBn + 3An = 0 ⇒ An = −µnBn

3

so that
Yn = Bn

(
−µn

3
cosh(µny) + sinh(µny)

)
.

We therefore have the modes

un(x, y) = XnYn = Bn sin(µnx)
(
−µn

3
cosh(µny) + sinh(µny)

)
, µn =

nπ

a
, n ∈ N.

Consequently the general solution is given by the superposition

u(x, y) =
∞∑
n=1

un(x, y) =
∞∑
n=1

Bn sin(µnx)
(
−µn

3
cosh(µny) + sinh(µny)

)
.

Hence

uy(x, y) =
∞∑
n=1

Bn sin(µnx)

(
−µ

2
n

3
sinh(µny) + µn cosh(µny)

)



and the final boundary condition becomes

f(x) = uy(x, b) =
∞∑
n=1

Bn sin(µnx)

(
−µ

2
n

3
sinh(µnb) + µn cosh(µnb)

)
.

This is just the 2a-periodic sine expansion of f(x), with coefficients a bit jumbled. That is

Bn

(
−µ

2
n

3
sinh(µnb) + µn cosh(µnb)

)
=

1

a

∫ a

0

f(x) sin(µnx) dx

so that

Bn =
1

a
(
−µ2n

3
sinh(µnb) + µn cosh(µnb)

) ∫ a

0

f(x) sin(µnx) dx .

This completes the solution.

Exercise 8. Suppose an ideal elastic 1 × 1 membrane experiences resistance to its motion
proportional to its velocity, so that its displacement, u, from equilibrium satisfies the damped
wave equation

utt + 2ut =
1

π2
∆u.

Use separation of variables to show that u → 0 exponentially as t → ∞, regardless of the
initial conditions.

Solution. Guess what? We separate variables. Write u(x, y, t) = X(x)Y (y)T (t) and plug
into the damped wave equation to obtain

XY T ′′ + 2XY T ′ =
1

π2
(X ′′Y T +XY ′′T ) ⇒ π2(

T ′′

T
+ 2

T ′

T
) =

X ′′

X
+
Y ′′

Y
= A,

since in the final equation the LHS depends only on t while the RHS depends only on x and
y. From the second half of this equation we obtain

X ′′

X
= A− Y ′′

Y
= B,

again for similar reasoning. Setting C = A − B and clearing denominators we obtain the
ODEs

X ′′ −BX = 0,

Y ′′ − CB = 0,

T ′′ + 2T ′ − B + C

π2
T = 0.

With the edges of the membrane fixed, we have the boundary conditions

0 = X(x)Y (0)T (t) ⇒ Y (0) = 0,

0 = X(x)Y (1)T (t) ⇒ Y (1) = 0,

0 = X(0)Y (y)T (t) ⇒ X(0) = 0,

0 = X(1)Y (y)T (t) ⇒ X(1) = 0,



where, once again, we have used the facts that we do not want X ≡ 0, Y ≡ 0, T ≡ 0.

We have yet again found familiar boundary value problems, in X and Y . The solutions
are

X = Xm = sin(mπx), m ∈ N,
Y = Yn = sin(nπy), n ∈ N,

with B = −(mπ)2, C = −(nπ)2. We let

λmn =

√
−B + C

π2
=
√

(m2 + n2).

so that the T ODE now reads
T ′′ + 2T ′ + λ2mnT = 0.

This is a constant coefficient equation and the roots of its characteristic polynomial are

−2±
√

4− 4λ2mn
2

= −1±
√

1− λ2mn = −1±
√

1−m2 − n2

= −1± i
√
m2 + n2 − 1 = −1± i

√
λ2mn − 1,

since m,n ≥ 1 implies that 1−m2 − n2 ≤ −1 < 0. Hence

T = Tmn = e−t
(
Amn cos

(
t
√
λ2mn − 1

)
+Bmn sin

(
t
√
λ2mn − 1

))
.

We finally conclude that the normal modes are

umn(x, y, t) = XmYnTmn = sin(mπx) sin(nπy)e−t
(
Amn cos

(
t
√
λ2mn − 1

)
+Bmn sin

(
t
√
λ2mn − 1

))
.

Superimposing gives the general solution

u(x, y, t) = e−t
∞∑
m=1

∞∑
n=1

sin(mπx) sin(nπy)
(
Amn cos

(
t
√
λ2mn − 1

)
+Bmn sin

(
t
√
λ2mn − 1

))
.

The series factor is oscillatory in t, but the e−t factor out front drives it to zero exponentially
as t→∞, as claimed.

Exercise 9. Consider Legendre’s differential equation

(1− x2)y′′ − 2xy′ + µy = 0, −1 < x < 1. (1)

a. Show that a = 0 is an ordinary point of (1).

Solution. Rewriting (1) in standard form gives

y′′ − 2x

1− x2
y′ +

µ

1− x2
= 0.



Since

p(x) = − 2x

1− x2
= −2x

∞∑
n=0

x2n =
∞∑
n=0

−2x2n+1, |x2| < 1 ⇔ |x| < 1

and

q(x) =
µ

1− x2
= µ

∞∑
n=0

x2n =
∞∑
n=0

µx2n, |x2| < 1 ⇔ |x| < 1,

both p and q are analytic at a = 0 with radii of convergence (at least) 1.

b. Give a lower bound on the radius of convergence of the power series solutions to (1) of
the form

y =
∞∑
n=0

anx
n.

Solution. As noted above, both p and q are analytic at a = 0 with radii of convergence
(at least) 1. Hence every solution to (1) is also given by a power series centered at a = 0
with at least radius of convergence at least 1.

c. Find the recursion relation satisfied by the coefficients an of the solutions y of part b.

Solution. Substituting

y =
∞∑
n=0

anx
n

into (1) yields

(1− x2)
∞∑
n=2

n(n− 1)anx
x−2 − 2x

∞∑
n=1

nanx
n−1 + µ

∞∑
n=0

anx
n = 0

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n − 2

∞∑
n=1

nanx
n + µ

∞∑
n=0

anx
n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=2

n(n− 1)anx
n − 2

∞∑
n=1

nanx
n + µ

∞∑
n=0

anx
n = 0

(2a2 + µa0) + (6a3 − 2a1 + µa1)x+
∞∑
n=2

((n+ 2)(n+ 1)an+2 − n(n− 1)an − 2nan + µan)xn = 0.

The identity principle gives

2a2 + µa0 = 0 ⇒ a2 = −µa0
2
,

6a3 − 2a1 + µa1 = 0 ⇒ a3 =
(2− µ)a1

6
,

(n+ 2)(n+ 1)an+2 − n(n− 1)an − 2nan + µan = 0 ⇒ an+2 =
(n2 + n− µ)an
(n+ 2)(n+ 1)

,

the final recursion holding for n ≥ 0 by direct computation.



d. In applications one often takes µ = m(m + 1), m ∈ N0. Show that in this case (1) has
a polynomial solution of degree m. Appropriately normalized, these are the Legendre
polynomials.

Solution. When µ = m(m + 1), the recursion of part c becomes (after some simplifi-
cation)

an+2 =
(n−m)(n+m+ 1)an

(n+ 2)(n+ 1)
.

Suppose m is even and take a0 = 1 and a1 = 0 we find that

a3 =
(1−m)(m+ 2)a1

3 · 2
= 0 ⇒ a5 =

(3−m)(m+ 4)a3
5 · 4

= 0 · · · ⇒ a2k+1 = 0 for k ≥ 0.

and likewise a0 determines a2, which determines a4, which determines a6, etc. Notice
that

am+2 =
(m−m)(m+m+ 1)am

(m+ 2)(m+ 1)
= 0 ⇒ a2k = 0 for k ≥ m+ 1.

Since we have already seen that the odd coefficients vanish, this means that our solution
looks like

y = a0 + a2x
2 + a4x

4 + · · ·+ amx
m,

i.e. is a polynomial of degree m. If m is odd and we take a0 = 0 and a1 = 1 something
entirely similar happens.

Exercise 10. Consider Bessel’s equation of order 3:

x2y′′ + xy′ + (x2 − 32)y = 0, x > 0. (2)

a. Show that a = 0 is a regular singular point of (2).

Solution. We put (2) in standard form obtaining

y′′ +
1

x
y′ +

(
1− 9

x2

)
y = 0

so that p(x) = 1/x and q(x) = 1− 9/x2. Since these aren’t even defined at x = 0 they
cannot be analytic at a = 0, so we definitely have a singular point. However xp(x) = 1
and x2q(x) = x2−9 are power seres centered at a = 0 with infinite radius of convergence
(they are simply polynomials), making the singular point regular.

b. Determine the value of r for which (2) is guaranteed to have a Frobenius solution:

y = xr
∞∑
n=0

anx
n, a0 6= 0.

What is the radius of convergence of the power series factor?



Solution. From above we have

p0 = lim
x→0

xp(x) = 1,

q0 = lim
x→0

x2q(x) = −9,

so that the indicial equation is

r2 + (1− 1)r − 9 = 0, ⇒ r = ±3.

Because 3− (−3) = 6 is an integer, only the larger value, namely r = 3 , is guaranteed
to yield a Frobenius-type solution. Because xp(x) and x2q(x) have infinite radius of
convergence, so, too, does the power series factor of any Frobenius solution.

c. For the value of r found in part b, find the recursion relation satisfied by the coefficients
an in the solution y.

Solution. Taking

y = x3
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+3 =

∞∑
n=3

an−3x
n, a0 6= 0,

and substituting into (2) we find that

x2
∞∑
n=3

n(n− 1)an−3x
n−2 + x

∞∑
n=3

nan−3x
n−1 + x2

∞∑
n=3

an−3x
n − 9

∞∑
n=3

an−3x
n = 0

∞∑
n=3

n(n− 1)an−3x
n +

∞∑
n=3

nan−3x+
∞∑
n=3

an−3x
n+2 − 9

∞∑
n=3

an−3x
n = 0

∞∑
n=3

n(n− 1)an−3x
n +

∞∑
n=3

nan−3x+
∞∑
n=5

an−5x
n − 9

∞∑
n=3

an−3x
n = 0

(6a0 + 3a0 − 9a0)x
3 + (12a1 + 4a1 − 9a1)x

4 +
∞∑
n=5

((n(n− 1) + n− 9)an−3 + an−5)x
n = 0.

Appealing to the identity principle to equate every coefficient to zero, the first term can-
cels out (as it should), the second yields 7a1 = 0, implying a1 = 0 , and the remaining
terms tell us that

(n(n− 1) + n− 9)an−3 + an−5 = 0 ⇒ an−3 =
−an−5
n2 − 9

for n ≥ 5 .

d. Write out the first 5 nonzero terms of y, assuming a0 = 1. If possible, find a general
formula for the coefficients in the series.

Solution. Since a1 = 0 and the recursion of c expresses each coefficient as a multiple of
the coefficient two indices earlier, we immediately have a3 = a5 = a7 = · · · = a2k+1 = 0
for k ≥ 0. On the other hand, with a0 = 1 we find that (since n2 − 9 = (n− 3)(n+ 3))

a2 =
−1

(5− 3)(5 + 3)
=
−1

2 · 8
⇒ a4 =

−a2
4 · 10

=
1

2 · 4 · 8 · 10
⇒

a6 =
−a4
6 · 12

=
−1

2 · 4 · 6 · 8 · 10 · 12
⇒ a8 =

−a6
8 · 14

=
1

2 · 4 · 6 · 8 · 8 · 10 · 12 · 14



so that in general we have

a2k =
(−1)k

2 · 4 · · · (2k) · 8 · 10 · · · (2k + 6)
=

(−1)k2 · 4 · 6
(2 · 4 · · · (2k)) (2 · 4 · · · (2k + 6))

=
(−1)k48

2kk!2k+3(k + 3)!
=

(−1)k6

22kk!(k + 3)!
for k ≥ 0.

Hence the Frobenius solution is

y = x3
∞∑
k=0

(−1)k6x2k

22kk!(k + 3)!
=
∞∑
k=0

(−1)k6x2k+3

22kk!(k + 3)!
.

If all we want are the first 5 nonzero terms, then we have

y = x3 − x5

16
+

x7

640
− x9

46080
+

x11

5160960
− · · · .


