Uniqueness of Decompositions of Finite Abelian Groups as Direct Sums of p-Groups

R. C. Daileda

Let A be a finite (additive) abelian group. We have seen that any such group can be decomposed as a direct sum of p-groups whose orders are relatively prime. ${ }^{1}$ The goal of this short note is to prove that this can be accomplished in (essentially) only one way. To simplify notation, given a prime p we let

$$
A(p)=\bigcup_{j=1}^{\infty} A_{p^{j}}
$$

Then $A(p)<A$ (exercise) and it consists of all elements in A whose orders are powers of p. The uniqueness of p-group decompositions for abelian groups is an immediate consequence of the following fact.
Lemma 1. Let A be a finite abelian group and let p be a prime number. If $A=A_{1} \oplus B$ where A_{1} is a p-group and $p \nmid|B|$, then p divides $|A|$ and $A_{1}=A(p)$.

Proof. Since p divides $\left|A_{1}\right|$, which divides $\left|A_{1} \oplus B\right|=\left|A_{1}\right| \cdot|B|$, the first conclusion holds. Let $a \in A(p)$. Then $p^{j} a=0$ for some $j \geq 0$. Write $a=a_{1}+b$ with $a_{1} \in A_{1}$ and $b \in B$. Then

$$
0=p^{j} a=p^{j} a_{1}+p^{j} b
$$

Because the sum of A_{1} and B is direct, this means that $p^{j} b=0$. If $b \neq 0$, this means that its order must be divisible by p. But $|b|$ divides $|B|$, and $p \nmid|B|$, so $b \neq 0$ is impossible. Hence $a=a_{1} \in A_{1}$. That is, $A(p) \subset A_{1}$.

On the other hand, since $\left|A_{1}\right|$ is a power of p, the orders of its elements are also powers of p. This means that $A_{1} \subset A(p)$. Combined with the inclusion above, we now have $A_{1}=A(p)$.
Theorem 1. Let A be a finite abelian group and let p_{1}, \ldots, p_{k} be distinct primes. Suppose that

$$
A=A_{1} \oplus \cdots \oplus A_{k}
$$

where each A_{i} is a p_{i}-group. Then p_{i} divides $|A|, A_{i}=A\left(p_{i}\right)$ for all i, and k is the number of distinct prime factors of $|A|$.

Proof. The first assertion follows from the lemma, upon taking $B=A_{1} \oplus \cdots \oplus \widehat{A_{i}} \oplus \cdots \oplus A_{k}$ for each i. Since $|A|=\left|A_{1}\right| \times \cdots \times\left|A_{k}\right|=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$, and each $r_{i} \geq 1$ by the definition of a p-group, the fundamental theorem of arithmetic implies that k is, indeed, the number of distinct prime factors of $|A|$.

[^0]The theorem tells us that no matter how we write A as a direct sum of p-groups, the summands will correspond to the prime factors of $|A|$, and for each prime p dividing $|A|$ the corresponding summand will in fact be $A(p)$. So, up to the order of the summands, the p-group decomposition of A is unique. In class, we produced the decomposition

$$
A=A_{p_{1}^{r_{1}}} \oplus \cdots \oplus A_{p_{k}^{r_{k}}},
$$

where $|A|=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ and the p_{i} are distinct. According to the theorem, we must therefore have $A\left(p_{i}\right)=A_{p_{i}^{r_{i}}}$ for all i. This isn't hard to prove directly, but the definition of $A(p)$ is somewhat easier to work with, since it doesn't require keeping track of a specific exponent.

[^0]: ${ }^{1}$ To avoid the inclusion of trivial summands, we require all p-groups to be nontrivial.

