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One of the essential ingredients in the proof of the fundamental theorem of finite abelian
groups is the classification of the finite abelian p-groups, (p being a prime number). The
outline of the proof of the classification theorem is straightforward enough. Given a finite
abelian p-group A, form a nontrivial quotient of A by a cyclic subgroup A1. Then inductively
decompose A/A1 as a direct sum of cyclic p-groups. Finally, we form A1×A/A1, which has the
structure we want and whose size is |A| and, and then argue that this is, in fact, isomorphic
to A.

It’s establishing the existence of an isomorphism ψ : A1×A/A1 → A in the final step that’s
the most challenging task. However, this follows almost immediately from the Lemma stated
below, which involves the ability to “lift” elements through the canonical map π : A→ A/A1

while preserving their order. The Lemma is easy enough to state and prove “in a vacuum,”
and in most presentations its statement and proof are usually totally unmotivated. Given
that it is the linchpin of the entire proof of the classification theorem, this is hardly an
intellectually satisfying state of affairs. The goal of this note is rectify this situation. We
will not only deduce the necessity of the Lemma, but will actually stumble across it’s proof
prior to its statement.

We now turn to a careful analysis of the data at hand. The inclusion ι : A1 ↪→ A and the
canonical map π : A→ A/A1 together yield a pair of homomorphisms of abelian groups,

A1
ι−→ A

π−→ A/A1,

with the property that im ι = kerπ. Such a pair is called exact. For convenience, denote the
trivial group by 0. The pair 0 → A1

ι−→ A is exact, since the inclusion is injective, as is the
pair A

π−→ A/A1 → 0, because the canonical map is surjective. Putting these together yields
the sequence

0→ A1
ι−→ A

π−→ A/A1 → 0, (1)

which is exact at each “link.”. This is known as a short exact sequence of abelian groups.

A very similar short exact sequence can naturally be derived from A1 × A/A1, namely

0→ A1
ι1−→ A1 × A/A1

π2−→ A/A1 → 0, (2)

where ι1(a) = (a, 0) and π2(a, β) = β.1 If we stack (1) and (2) we get a diagram

0 //

��

A1
ι1 //

��

A1 × A/A1
π2 //

ψ?

��

A/A1
//

��

0

��
0 // A1

ι // A π // A/A1
// 0

(3)

1We’ve used the variable β only to indicate that elements of A/A1 are cosets and not elements of A.
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where the solid vertical arrows are identity functions. The dashed line represents the hypo-
thetical isomorphism ψ between A and A1 × A/A1.

With the goal of reverse engineering it, assume there is a homomorphism ψ so that the
diagram (3) is commutative. The short five lemma then guarantees that it must be an
isomorphism. If ι2 : A/A1 → A1 × A/A1 is the map β 7→ (0, β), let σ = ψ ◦ ι. Notice that
for any β ∈ A/A1 we have

π(σ(β)) = π ◦ ψ(0, β) = π2(0, β) = β.

In other words, σ : A/A1 → A is a homomorphism satisfying π ◦ σ = 1A/A1 . Such a map is
called a section of π, and its existence is equivalent to the existence of ψ.

To see this, suppose σ : A/A1 → A is a section of π and define ψ : A1 × A/A1 → A by
(a, β) 7→ a+ σ(β). This is certainly a homomorphism and we have

ψ(ι1(a))− ψ(a, 0) = a = ι(a) for all a ∈ A1

as well as

π(ψ(a, β)) = π(a+ σ(β)) = π(a) + β = β = π2(a, β) for all (a, β) ∈ A1 × A/A1,

since ker π = A1. This means that (3) commutes and hence that ψ is an isomorphism.

The moral of all of this discussion is that if A is a finite abelian p-group, and we can find
a nontrivial cyclic subgroup A1 of A for which the canonical epimorphism A→ A/A1 has a
section, then A ∼= A1 × A/A1, and we can inductively argue that A has a decomposition as
a direct sum of cyclic p-groups.

Set-theoretically, every surjective function has a “section,” because it has a right inverse.
But a section of a surjective homomorphism f : A→ B is not only a right inverse, but also
itself an (injective) homomorphism. Arranging this is not as simple as it sounds: simply
choosing an arbitrary preimage for each element of B is not likely to yield a subgroup
of A. For example, consider the quaternion group Q = {±1,±i,±j,±k}. The subgroup
Z = Z(Q) = {±1} is normal and the quotient Q/Z has order 4, so is abelian. But there
is no abelian subgroup of Q of order 4 of the form {1, ε1i, ε2j, ε3k} with all εi ∈ Z. So the
canonical map π : Q→ Q/Z has no section.

Before thinking any further about sectioning π specifically, let’s work a bit more generally.
Let f : A→ B be a surjective homomorphism of groups. Suppose g : B → A is a section of
f . What distinguishes an arbitrary right inverse of f from a section of f? A right inverse
simply chooses, for each b ∈ B, an element in f−1({b}). So let’s compare arbitrary preimages
with the preimages provided by g. Let b ∈ B and let a1 ∈ A be any preimage of b. Set
a2 = g(b), a particular preimage of b. Both a1 and a2 solve the equation f(x) = b, i.e. are
lifts of b to A. However, because g is an injective homomorphism, |a2| = |b|, whereas the
most we can say about a1 is that |b| divides |a1|. So a section of f : A → B must lift each
element of B to A while simultaneously preserving order.

In and of itself, this more restrictive condition on a set-theoretic right inverse of f : A→ B
by no means guarantees it will be a section f . But it gives us a place to start. For suppose B
is cyclic, generated by b, and that we can find at least one preimage a ∈ A of b so that |a| = |b|.
Then the map g : B = 〈b〉 → 〈a〉 defined by nb 7→ na is a well-defined isomorphism (n is not
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necessarily unique, but a and b have the same order), and f(g(nb)) = f(na) = nf(a) = nb.
Composing g with the inclusion of 〈a〉 into A, we obtain a section of f . This proves that
when the codomain is cyclic, the existence of a section is equivalent to the existence of an
order preserving right inverse (the former may be constructed from the latter).

And this is still true under the weaker hypothesis that B is a direct sum of cyclic groups.
For suppose that B = ⊕i∈IBi,

2 that Bi = 〈bi〉 for each i, and that we have ai ∈ f−1({bi}) so
that |ai| = |bi|. Given b ∈ B, there is a unique expression b =

∑
i∈I βi with βi ∈ Bi for all

i. Write βi = nibi with ni ∈ Z for each i, and define g(b) =
∑

i∈I niai. Although the βi are
unique, the integers ni need not be, so we must check to see that g is well-defined. If we also
have βi = mibi for every i, then |bi| = |ai| divides mi − ni, and so

∑
i∈I niai =

∑
i∈I miai.

Therefore g(b) is indeed well-defined. It is easy to see that it is a homomorphism, and hence

f(g(b)) = f

(∑
i∈I

niai

)
=
∑
i∈I

nif(ai) = b,

for any b ∈ B. That is, g is a section of f .

It’s important to notice that the real technical subtlety in the preceding two paragraphs is
whether or not the maps we have constructed are well-defined. Once that question is settled,
the fact that we’ve built a section is more or less automatic. To illustrate this point, suppose
B = 〈b〉 and we choose an arbitrary preimage a of b in A. We might still attempt to define
g : 〈b〉 → 〈a〉 by the same formula, namely g(nb) = na. If nb = mb, then |b| divides n−m,
but na = ma if an only if |a| divides n −m. Unless |b| = |a| we cannot guarantee that the
former condition implies the latter, meaning that g may not actually define a function.

Returning to the case in which A is a finite abelian p-group, A1 < A is a nontrivial cyclic
subgroup, and our homomorphism is the canonical map π : A → A/A1, we now see that
we will be able to inductively prove that A is a direct sum of cyclic (sub)groups if we can
show that π has an order-preserving right inverse. To that end, let β ∈ A/A1 with |β| = ps.
If π(b) = β, then |β| = ps divides |b|. It suffices to show we can always choose b so that
psb = 0.

Fix a particular preimage b0 of β. Since kerπ = A1, every other preimage is of the form
b = b0 − a with a ∈ A1. We have psb = 0 if and only if psb0 = psa. So it suffices to show
that if psb0 ∈ A1, then psb0 ∈ psA1. So, how do we choose A1 so that

psA ∩ A1 ⊂ psA1?

If |A1| = pr and s ≤ r, then the fact that A1 is cyclic means psA1 is the pr−s-torsion subgroup
of A1. So psA ∩A1 ⊂ psA1 if and only if pr−s(psA ∩A1) = prA ∩ pr−sA1 = 0. Since we have
no control over s, the easiest way to make this happen is to simply choose r so large that
prA = 0. This puts two restrictions on r: pr needs to be an exponent for A and also needs
to be the order of A1, a cyclic subgroup of A.

So our entire discussion has boiled down to the following conclusion. We can inductively
prove that a finite abelian p-group A is a direct sum of cyclic subgroups provided A has
an element of order pr (to generate A1), and no element of higher order (lest pr fail to be

2We need not assume that I is finite, but if it happens to be infinite we need to add the caveat that in any sum over I only
finitely many summands are nonzero.
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an exponent for A). This is easy to achieve. Simply let a be an element in A with largest
possible order and set A1 = 〈a〉. Although the proof that this accomplishes what we need
is laid out above, we give the condensed (and unmotivated) version usually presented in
textbooks.

Lemma. Let A be a finite abelian p-group, a ∈ A with maximum order, A1 = 〈a〉, and
π : A → A/A1 the canonical epimorphism. For any β ∈ A/A1, there exists b ∈ A so that
β = π(b) and |b| = |β|.

Proof. Choose any b′ ∈ A so that π(b′) = β. Since |β| = ps must divide |b|, and |a| = pr is
an exponent for A, we must have s ≤ r. Because the canonical map is a homomorphism,

0 = psβ = psb′ ⇒ psb′ ∈ 〈a〉.
Now pr−s ∈ N and

pr−s(psb′) = prb′ = 0 ⇒ psb′ ∈ (〈a〉)pr−s .

But 〈a〉 is a cyclic group of order pr, so the pr−s-torsion subgroup is precisely 〈psa〉 (exercise).
This means that there is an n ∈ Z so that

psb′ = n(psa) = psa′,

where a′ = na ∈ 〈a〉. Let b = b′ − a′. Then π(b) = π(b′ − a′) = π(b′) = β and psb = 0. This
means |b| divides ps and is divisible by |π(b)| = |β| = ps, so that |b| = ps, as needed.

Assembling everything above, the inductive proof that a finite abelian p-group A is the
direct sum of cyclic subgroups is now almost immediate. We induct on n, where |A| = pn.
When n = 1, there is nothing to prove. Suppose that |A| = pn and we have proven the result
for all finite abelian p-groups of smaller order. Let a ∈ A have maximum order pr and set
A1 = 〈a〉. By the Lemma, the canonical surjection π : A → A/A1 has an order-preserving
right inverse. By our inductive hypothesis, A/A1 is a direct sum of cyclic subgroups. As we
have seen, these conditions together ensure the existence of a section σ : A/A1 → A of π,
and therefore there is an isomorphism ψ : A1 × A/A1 → A. This shows that A is a sum of
cyclic subgroups, and completes the induction.

Remartk 1. There’s one more, sightly more advanced, approach that can be taken here.
Given the direct product/sum P ×Q of any two abelian groups P and Q, we have a pair of
homomorphisms

P
ι1 // P ×Q Q,

ι2oo

where ι1(p) = (p, 0) and iota2(q) = (0, q). The universal property of direct sums states that
given any similar arrangements of homomorphisms

P
f // A Q,

goo

there is a unique homomorphism ψ :: P ×Q→ A so that

P ×Q
ψ

��
P

ι1
<<

f // A Q
goo

ι2
bb
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commutes.

In our context, this means that if we can section π (which still remains the crucial issue!),
we get the homomorphism ψ “for free.” Of course, there’s still work remaining to show this
is an isomorphism, but it gives us a new way to think about the problem.

Remark 2. The direct sum and direct product of a finite number of abelian groups are the
same object. If we treat P × Q as a product, we get the same types of diagrams as above,
but with the “arrows” reversed. Using the universality of products, one can show along the
same lines that if its’s possible to section the inclusion ι : A1 → A, one can achieve the same
effect. But this seems much more difficult to do.
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