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Here’s the fundamental theorem of finite abelian groups, as we’re proven it.

Theorem 1. Let A be a finite abelian group. Then A can be uniquely expressed as a direct
sum of abelian p-groups

A = A(p1)⊕ A(p2)⊕ · · · ⊕ A(pk),

where the pi are the distinct prime divisors of |A|. Moreover, each A(pi) is a direct sum of
cyclic pi-groups

A(pi) ∼= C
p
s(i,1)
i
⊕ C

p
s(i,2)
i
⊕ · · · ⊕ C

p
s(i,`i)
i

, (1)

in which the sequence of exponents

s(i, 1) ≥ s(i, 2) ≥ · · · ≥ s(i, `i) ≥ 1, (2)

is unique.

To remind the reader, here

A(p) = {a ∈ A | pka = 0 for some k ∈ N0},

and Cn is a cyclic group of order n. Of course, one could write Z/nZ instead, but in our
current setting this becomes a bit cumbersome.

There is a somewhat more fruitful way of thinking of the decomposition of Theorem 1,
simply by rearranging the summands (we’re in an abelian group, so addition is commutative),
and applying the Chinese remainder theorem. First, observe that if we insert terminal zeros
at the end of every sequence of exponents (2), we lose uniqueness of the sequence, but don’t
change the isomorphism class of the direct sum (1). So, by inserting zeros if necessary, we
may assume `i = ` for all i.

Now write out the direct summands A(pk) in rows.

A(p1) ∼= C
p
s(1,1)
1
⊕ C

p
s(1,2)
1
⊕ · · · ⊕ C

p
s(1,`)
1

A(p2) ∼= C
p
s(2,1)
2
⊕ C

p
s(2,2)
2
⊕ · · · ⊕ C

p
s(2,`)
2

...

A(pk) ∼= C
p
s(k,1)
k
⊕ C

p
s(k,2)
k
⊕ · · · ⊕ C

p
s(k,`)
k

Now sum down each column and apply the Chinese remainder theorem1 to obtain

C
p
s(1,j)
1
⊕ C

p
s(2,j)
2
⊕ · · · ⊕ C

p
s(k,j)
k

∼= Cdj ,

1See the Appendix.

1



where
dj = p

s(1,j)
1 p

s(2,j)
2 · · · ps(k,j)k . (3)

We therefore have

A = A(p1)⊕ A(p2)⊕ · · ·A(pk) ∼= Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cd` .

Because the exponents s(i, j) decrease in j, equation (3) shows that we must have

d`|d`−1|d`−2| · · · |d1.

Moreover, because the product of the primes powers p
s(i,j)
i is equal to the order of A, we also

find that
|A| = d1d2 · · · d`.

The integers d1, d2, . . . , d` completely classify A and provide us with another, frequently more
useful, decomposition of a finite abelian group.

Theorem 2. Let A be a finite abelian group. There is a unique list d1, d2, . . . , d` ∈ N so that

1. d`|d`−1| · · · |d1

2. d1d2 · · · d` = |A|.

3. A ∼= Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cd`

The integers d1, d2, . . . , d` are called the elementary divisors of A.

Proof. We induct on the size of A. If |A| = 1, then d1 = 1 is the only elementary divisor
of A. Now suppose |A| > 1 and the theorem holds for all finite abelian groups of order less
than |A|. Suppose that d1, d2, . . . , d` is a sequence of elementary divisors for A. Since d1 is
the smallest positive exponent of A, it is uniquely determined by A. Let

A1 = Cd1 ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
` summands

.

Then
A/A1

∼= Cd2 ⊕ · · · ⊕ Cd` ,

so that d2, . . . , d` are elementary divisors of A/A1, and are therefore unique by the inductive
hypothesis. This completes the proof.

We mention a few immediate consequences of (both versions) of the fundamental theorem.

Proposition 1. Let A be a finite abelian group. For any positive n dividing |A|, A has a
subgroup of order n.2

2Unlike the case in which A is also assumed to be cyclic, there is no claim that any such subgroup need to be unique.
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Proof. For any prime p dividing n, A must contain a cyclic subgroup of order p (either by the
fundamental theorem, or by earlier results). Let A1 denote the direct sum of these subgroups,
m = |A1|, and consider A/A1. Since n/m divides |A/A1| = |A|/m, we can inductively find a
subgroup H ′ of A/A1 whose order is n/m. By the correspondence principle, H ′ = H/A1 for
some subgroup H of A. A quick computation shows that

n

m
= |H ′| = |H|

|A1|
=
|H|
m

⇒ |H| = n,

as claimed.

Although apparently trivial, the following result can be used to yield a quick proof that
every finite abelian group occurs as a Galois group over Q.

Corollary 1. Let A be a finite abelian group. For any positive n dividing |A|, A as a
subgroup of index n.

Proof. Apply the Proposition to |A|/n.

The final result we mention is a structure theorem for multiplicative subgroups of C×.
Although it can be proven directly, the argument we give has two advantages: (i) it avoids
the use of the division algorithm; (ii) it applies generally to an arbitrary field. It is essential
in understanding the nature of the so-called roots of unity in a field, i.e. those solutions to
equations of the form xn − 1 = 0.

Proposition 2. Let µ be a (multiplicative) subgroup of C×. If µ is finite, then it is cyclic.

Proof. Because µ is abelian, we can write

µ ∼= Cd1 ⊕ · · · ⊕ Cd` , (4)

the isomorphism of course being multiplicative to additive. Because d1 is an exponent for
the direct sum, it must also be an exponent for µ, and hence zd1 = 1 for all z ∈ µ. But the
isomorphism also tells us that |µ| = d1d2 · · · d`. It follows that the degree d1 polynomial

xd1 − 1

has d1d2 · · · d` roots. Since no polynomial over C can have more roots than its degree, this
is a contradiction unless ` = 1. Consequently (4) reduces to

µ ∼= Cd1 ,

which is what we needed to show.

Remark 1. Let µ < C× be finite, of order n. By Lagrange’s theorem, every element of µ
must be a root of the degree n polynomial xn−1, and there can be no other roots. Conversely,
it is an easy exercise to show that the roots of xn − 1 in C× do, indeed, form a subgroup µ
of C×, and that the the fundamental theorem of algebra guarantees that |µ| = n. That is
C× has a unique finite subgroup for every n ∈ N, consisting precisely of the n roots of the
polynomial xn − 1.

3



The roots of xn − 1 are called nth roots of unity, and what we have just shown is that,
in every case, they form a subgroup µ = µn of C× of order n. By Proposition 2, for any n
the group µn is cyclic, so there is a ζn ∈ µn, of multiplicative order n, so that µn = 〈ζn〉.
Because every other nth root of unity in µn is a power of ζn, we call ζn a primitive root of
unity. Although their existence is useful, primitive nth roots are by no means unique, as
they as just unspecified generators of a cyclic group.

Remark 2. If we replace C with an arbitrary field F, (roughly speaking an algebraic
structure with addition, subtraction, multiplication and (nonzero) division), Proposition 2
remains valid, by the same proof. The argument of Remark 1 also still works, too, provided
n is not divisible by the characteristic of F, when it is positive.3 The roots of unity in fields
of positive characteristic p can still be classified, but there are subtleties tied to the cases
in which n is divisible by p. Believe it or not, these are all caused by the apparently trivial
identity

(x− 1)p ≡ xp − 1 (mod p).

Appendix: The Chinese Remainder Theorem

Theorem 3. Let m1,m2, . . . ,mk be pairwise relatively prime positive integers and set N =
m1 · · ·mk. Then

Z/NZ ∼= Z/m1Z× Z/m2Z× · · · × Z/mkZ.

Proof. By mapping onto each coordinate separately, the individual canonical maps Z →
Z/miZ together yield a homomorphism

h : Z→ Z/m1Z× Z/m2Z× · · · × Z/mkZ.

One can show directly that this is surjective, but we prefer a shorter, indirect approach. The
kernel of h consists of all those n ∈ Z that are simultaneously divisible by every mi. Because
gcd(mi,mj) = 1 for all i 6= j, this occurs if and only if m1 · · ·mk = N divides n. Hence
kerh = NZ, and by the first isomorphism theorem we have

h : Z/NZ ↪→ Z/m1Z× Z/m2Z× · · · × Z/mkZ.

Because the domain and codomain both have order N , the injectivity of h implies it is
actually a bijection, and therefore an isomorphism.

Remark. This can also be proven by first treating the case k = 2 (by the same method),
and then inducting.

3Given a (commutative) ring R with (multiplicative) identity, the map m 7→ m · 1R is a ring homomorphism Z → R. Its
kernel has the form kZ for some k ≥ 0, and via the first isomorphism theorem we get an embedding Z/kZ ↪→ R. We define the
characteristic of R to be k. It turns out that if R is a field, either k = 0 (e.g. C or R or Q ) or k = p, a prime (e.g. Z/pZ or any
of its extensions).
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