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The group-theoretic result known as Cauchy’s theorem posits the existence of elements of all possible
prime orders in a finite group. It can be viewed as a partial converse to Lagrange’s theorem, and is the first
step in the direction of Sylow theory, which studies maximal prime-power order subgroups. The goal of this
note is to present proofs of Cauchy’s theorem and Sylow’s theorems based almost entirely on the application
of group actions and the class equation (a.k.a. the orbit-stabilizer theorem). These proofs demonstrate
the flexibility and utility of group actions in general. As we will see, the simplicity of the class equation,
in particular, often reduces apparently difficult counting problems to simple statements about modular
arithmetic.

1 Cauchy’s Theorem

Here we present a simple proof of Cauchy’s theorem that makes use of the cyclic permutation action of
Z/nZ on n-tuples. Although not the original proof, it is perhaps the most widely known; it is certainly the
author’s favorite.

Theorem 1 (Cauchy). Let G be a finite group and let p be a prime number. If p divides |G|, then G has
an element of order p.

Proof. Let
S = {(a1, a2, . . . , ap) | ai ∈ G, a0a1 · · · ap−1 = e},

the set of all ordered p-tuples of elements of G whose product is the identity. In any such p-tuple, we are
free to choose a1, a2, . . . , ap−1, and then ap is completely determined by

ap = (a1a2 · · · ap−1)−1.

It follows that
|S| = |G|p−1.

Similarly, notice that if (a1, a2, . . . , ap) ∈ S, and 2 ≤ r ≤ p, then we have

(a1a2 · · · ar−1)(ar · · · ap) = e ⇒ (a1a2 · · · ar−1) = (ar · · · ap)−1

⇒ (ar · · · ap)(a1a2 · · · ar−1) = e

⇒ (ar, . . . , ap, a1, a2, . . . , ar−1) ∈ S,
(1)

where in the second line we have used the fact that inverses in a group are always two-sided. This says we
can cyclically shift the entries of tuples in S, which is essential in what follows.

The idea of the proof is to let k ∈ Z/pZ act on S by cyclicly permuting indices: ai 7→ ai+k (mod p).
Although it eventually works out, checking that this completely natural operation is actually an action is
quite tedious. So we opt for an equivalent, permutation-theoretic approach.
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We first define an action of Sp on the larger set Gp, and then restrict it to a p-cyclic action on S. For
σ ∈ Sp and a = (a1, . . . , ap) ∈ Gp, set

aσ = (aσ(1), . . . , aσ(p)),

so that aσ has aσ(i) in its ith entry. It is clear that Id acts trivially on any p-tuple. Given τ ∈ Sp, to compute
(aσ)τ , write

aσ = (aσ(1), . . . , aσ(p)) = (b1, . . . , bp).

Then bi = aσ(i) for all i so that

(aσ)τ = (b1, . . . , bp)
τ = (bτ(1), . . . , bτ(p)) = (aσ(τ(1)), . . . , aσ(τ(p))) = (aστ(1), . . . , aστ(p)) = aστ .

In other words, (σ,a) 7→ aσ is a right action of Sp on Gp.1

Now let σ = (1 2 3 · · · p) and C = 〈σ〉. Notice that if (a1, a2, . . . , ap) ∈ S, then

(a1, a2, . . . , ap)
σk

= (ak+1, ak+2 . . . , ap, a1, . . . , ak) ∈ S,

according to (1). This shows that S ⊂ Gp is invariant under C, or that C acts on S. Because |C| = p, the
stabilizer Ca of any a ∈ S is either trivial or equal to C. In other words, for any a ∈ S, [C : Ca] = p, or a is
a fixed point of C.

Because |S| = |G|p−1 ≡ 0 (mod p), the class equation

|S| = |F|+
∑
a∈O∗

[C : Ca]. (2)

therefore implies that
|F| ≡ 0 (mod p). (3)

But
F = {(a, a, . . . , a) | ap = e} = {(e, e, . . . , e)} t {(a, a, . . . , a) | a ∈ G, |a| = p},

so that |F| = 1 +Np, where Np is the number of elements of G of order p. The congruence (3) then becomes

Np ≡ −1 (mod p),

which proves that Np 6= 0 and completes the proof.

We state as a corollary the following stronger statement that was obtained during the course of the proof
of Cauchy’s theorem.

Corollary 1. Let G be a finite group and let p be a prime number. If p divides |G|, and Np denotes the
number of elements of G of order p, then

Np ≡ −1 (mod p).

Let G be a finite group whose order is divisible by a prime p. The elements of G of order p can be
partitioned according to the subgroup that they generate. Suppose there are Mp subgroups of G of order p.
Then G contains exactly Mp(p− 1) elements of order p. Comparing this with the statement of the corollary
we find that

Mp(p− 1) ≡ −Mp ≡ −1 (mod p) ⇒ Mp ≡ 1 (mod p).

1Another way to verify the action axiom (aσ)τ = aστ is to view each tuple a ∈ Gp as a function a : I(p)→ G. Our definition
then becomes aσ = a ◦ σ, so that aστ = a ◦ (στ) = (a ◦ σ) ◦ τ = (aσ)τ .
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2 Sylow’s Theorems

Let p be a prime. A group G is called a p-group provided the order of every element of G is a power of p.
For finite groups, this is equivalent to the statement that |G| is a power of p. For if G is a finite p-group,
and q is a prime dividing |G|, then Cauchy’s theorem implies that G must have an element of order q. But q
cannot be a power of p unless q = p. Therefore the only prime dividing |G| is p. The converse of this result
is an immediate consequence of Lagrange’s theorem.

Given a finite group G and a prime p dividing |G|, we say that P < G is a p-Sylow subgroup of G if
|P | = pm and pm+1 - |G|. Equivalently, P is a p-Sylow subgroup of G provided P is a p-group and p - [G : P ].
Although Cauchy’s theorem only asserts the existence of p-subgroups of G of order p, it is actually equivalent
to Sylow’s first theorem on the existence of p-Sylow subgroups.

Theorem 2. [Sylow’s First Theorem] Let G be a finite group and p a prime dividing |G|. Then G has a
p-Sylow subgroup.

Proof. Write |G| = pk with k ∈ N. We induct on k, the case k = 1 being trivial. So assume k ≥ 2 and that
the result holds for all groups of order p` with ` < k. Let G act on itself by conjugation and consider the
class equation

|G| = |Z(G)|+
∑
x∈C∗

[G : CG(x)], (4)

where C∗ contains one element from every nontrivial conjugacy class. If there is an x ∈ C∗ so that p - [G :
CG(x)], then |CG(x)| = p`, with ` < k. Apply the inductive hypothesis to obtain a p-Sylow subgroup P of
CG(x). Since p - [CG(x) : P ], the assumption that p - [G : CG(x)] implies p - [G : P ]. Since P is a p-group,
it follows that P is a p-Sylow subgroup of G.

In the remaining case, we must have p|[G : CG(x)] for all x ∈ C∗. The class equation (4) then implies
that

|Z(G)| ≡ 0 (mod p).

By Cauchy’s theorem, Z(G) therefore contains an element x of order p. Let H = 〈x〉. if p - [G : H], then
H is a p-Sylow subgroup of G. Otherwise, being central, H is normal in G, and G/H is a group of order
p`, with ` < k. By the inductive hypothesis, G/H has a p-Sylow subgroup P0, and by the correspondence
principle P0 = P/H for some subgroup P of G containing H. Notice that

|P | = [P : H] |H| = p |P0|,

so that P is a p-group. Since p - [G/H : P0] = [G/H : P/H] = [G : P ], we find that P is a p-Sylow subgroup
of G. This completes the induction and the proof.

Notice that in the proof, Cauchy’s theorem was necessary in the second case to ensure that the pullback
of P0 through the quotient map was indeed a p-group. It’s tempting to simply take H = Z(G), but because
we can’t control the other prime factors of |Z(G)|, we would be unable to ensure that the subgroup P is
genuinely a p-group. We might try to work around this possibility by inductively taking a Sylow p-subgroup
of P instead, but it’s entirely possible that P = G, which would preclude the application of the inductive
hypothesis.

Prior to the statement of Sylow’s first theorem, we mentioned that it is, in fact, equivalent to Cauchy’s
theorem. We have just seen that the former is certainly a consequence of the latter. As for the converse,
assume Theorem 2 and let G be a finite group whose order is divisible by a prime p. Let P < G be a
p-Sylow subgroup of G. Because P is a p-group, Z(P ) is nontrivial. The classification of abelian p-groups
then implies that Z(P ), and hence G, has an element of order p, proving Cauchy’s theorem.
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An important result in the theory of p-Sylow subgroups is that they are maximal (relative to containment)
among the p-subgroups of a finite group. Important in establishing this fact, as well as a number of others,
is the following lemma.

Lemma 1. Let G be a finite group and p a prime dividing |G|. If H is a p-subgroup of G and P is a p-Sylow
subgroup of G, then H normalizes P if and only if H < P .

Proof. If H normalizes P , then H and P are subgroups of NG(P ), the latter being normal. By the second
isomorphism theorem,

HP/P ∼= H/H ∩ P.

Thus |HP | = [HP :P ]|P | = [H :H ∩P ]|P | is a power of p dividing |G|. Because |P | is the largest such power
|G|, this implies that [H :H ∩ P ] = 1 and hence H = H ∩ P < P .

Let G be a finite group, p a prime dividing |G|, and P an arbitrary p-Sylow subgroup of G. The set S of
G-conjugates of P has size

|S| = [G :NG(P )],

which divides [G :P ] and is therefore relatively prime to p. Let H < G be any p-subgroup. If we let H act
on S by conjugation, the fixed points F are the conjugates of P normalized by H. By Lemma 1, these are
precisely the conjugates of P containing H. Because H is a p-group, if we consider the class equation mod
p we obtain

|S| ≡ |F| (mod p).

Since p - |S|, this implies that F 6= ∅. That is, there is a conjugate of P containing H. This proves the
following result.

Theorem 3. Let G be a finite group, p a prime dividing |G| and P < G a p-Sylow subgroup. If H < G is
a p-subgroup, then there is a conjugate of P containing H, and the number of such conjugates is congruent
to [G :NG(P )] (mod p). In particular, every p-subgroup of G is contained in a p-Sylow subgroup of G. The
p-Sylow subgroups are therefore the maximal p-subgroups of G.

Theorem 4 (Sylow’s Second and Third Theorems). Let G be a finite group, p a prime dividing |G| and P
a p-Sylow subgroup. Write |G| = pmk with p - k . Then:

1. All p-Sylow subgroups are conjugate. In particular, a p-Sylow subgroup is normal in G if and only if it
is unique.

2. The number of p-Sylow subgroups of G is [G :NG(P )], which divides k and is ≡ 1(mod p).

Proof. In Theorem 3, take H to be any p-Sylow subgroup of G. Order considerations show that any conjugate
of P containing H must, in fact, equal H. This proves part 1. It follows that:

• [G :NG(P )], which counts the conjugates of P , actually counts all of the p-Sylow subgroups of G;

• [G :NG(P )] ≡ 1 (mod p), since there can be no more that one conjugate of P equal to H.

To complete the proof, it only remains to observe that [G :NG(P )] divides [G : P ] = k

Example. A beautiful application of Sylow’s theorems is to groups of order pq, where p < q are primes.
We claim that if q 6≡ 1 (mod p), then any group of order pq is cyclic.

To see this, let G have order pq with p, q as above. Let Q be a q-Sylow subgroup of G. Since [G : Q] = p is
the smallest prime divisor of |G|, we have QCG. Now let P be a p-Sylow subgroup of G. If P is not normal
in G, then the number of p-Sylow subgroups of G must be q. But q 6≡ 1 (mod p), so this is impossible. Hence
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P CG as well. Since (|P |, |Q|) = (p, q) = 1, P ∩Q = {e}. This means that P and Q commute element-wise,
and so G = PQ ∼= P ×Q. This establishes the claim.

In the interest of completeness, there’s one more thing to be said about the p-subgroups of a finite group
G. It can be viewed as a generalization of Cauchy’s theorem to prime power subgroups. We first state a
special case, then apply it to the general setting.

Lemma 2. Let G be a finite p-group of order pn. There exists a chain of subgroups

H1 < H2 < · · · < Hn = G,

with |Hi| = pi for all i.

Proof. We induct on n; when n = 1 there is nothing to prove. So assume that G is a p-group of order pn,
n > 1, and that we have proven the result for all finite p-groups of order less than pn. We have proven
elsewhere (using the class equation!) that because G is a p-group, its center Z(G) is nontrivial. As in the
proof of the first Sylow theorem, let x ∈ Z(G) have order p, so that H = 〈x〉 is a normal subgroup of G of
order p.

The inductive hypothesis applies to G/H, yielding subgroups

H2 < H3 < · · · < Hn = G/H,

with |Hj | = pj−1 for all j. By the correspondence principle, for each j there is a unique subgroup Hj < G
containing H so that

Hj = Hj/H.

We then have
H = H1 < H2 < H3 < · · · < Hn = G,

and
|Hj | = [Hj :H] |H| = |Hj | p = pj

for all j ≥ 1, which prove the result when |G| = pn. By induction, it holds for all finite p-groups.

The use of a cyclic subgroup of Z(G) in this proof was more for convenience than out of necessity. We
could simply have taken H = Z(G) and attempted to induct on G/Z(G) and Z(G). The drawback is that
if G is abelian, then G = Z(G), and induction doesn’t apply. This situation can be dealt with directly, but
rather than break the proof into multiple cases we opted to use a smaller subgroup which ensured that the
quotient G/H wasn’t trivial.

Our final result about p-subgroups of finite groups is a simple consequence of Lemma 2.

Theorem 5. Let G be a finite group and p a prime dividing |G|. If P is a p-Sylow subgroup of G, of order
pn, then there exists a chain

H1 < H2 < · · · < Hn = P,

where |Hi| = pi for all i ≥ 1.

Proof. Apply Lemma 2 to P .
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