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Let n ≥ 3 be an integer and consider a regular closed n-sided polygon Pn in R2. Cut P
free from R2 along its edges, (rigidly) manipulate it in R3, and return Pn to fill the hole in R2

that was left behind. This yields a bijection of Pn with itself, one that maps edges to edges,
and pairs of adjacent vertices to adjacent vertices. The set of all such elements in Perm(Pn)
obtained in this way is called the dihedral group (of symmetries of Pn) and is denoted by
Dn.1 We claim that Dn is a subgroup of Perm(Pn) of order 2n.

Since we can always just leave Pn unmoved, Dn contains the identity function. And
since any manipulation of Pn in R3 that yields an element of Dn can certainly be reversed,
Dn contains the inverse of every one of its elements. And since manipulating Pn in R3,
returning it to the plane, picking it up and manipulating it again, and then returning it once
more to R2, can be considered a single 3-D manipulation, we find that Dn is closed under
composition. This proves that Dn is a subgroup of Perm(Pn).2

Now we need to count Dn. Every element of Dn can be described in terms of the final
position of Pn after spatial manipulation. Before moving Pn, label its vertices with 1, 2, . . . , n
in counterclockwise order, starting with some fixed vertex. Label the vertices of its “hole”
(complement in R2) to match. After Pn has been manipulated and returned to the plane
to yield an element of Dn, vertex 1 of Pn will be in the position of the complement vertex
labelled i for some i, and the labels of the remaining vertices of Pn will either increase in
clockwise or counterclockwise order. Since there are n positions where vertex 1 can land,
and two possible orientations for the remaining labels, we find that there are at most 2n final
positions of Pn after being manipulated. Since it is clear that every such final orientation is
possible to achieve, we conclude that |Dn| = 2n.

To describe Dn group theoretically, we need to construct some (fairly) specific elements
of Dn. First, let r ∈ Dn denote a counterclockwise rotation of Pn about its center by 2π/n
radians. It should be clear that as a transformation of Pn, r has order n. Now let f ∈ Dn

denote any manipulation that flips Pn “upside down” and then puts it back (in any way at
all). This will put all of the labels of Pn in clockwise order. For any 0 ≤ k ≤ n − 1, rkf
maintains this property, and no two of these are identical since |r| = n. The powers rk,
0 ≤ k ≤ n − 1, on the other hand, preserve the original counterclockwise ordering on the
vertices of Pn, and are also distinct. Thus,

Dn = {rkf e | 0 ≤ k ≤ n− 1, e ∈ {0, 1}}, (1)

and the exponents in each element are unique.3 In particular, r and f generate Dn.

1Be aware that some authors use the notation D2n for the same group.
2The author first heard this particular “physical” description of Dn from Matt Galla, a former Trinity mathematics student.
3This actually makes Dn a semi-direct product, which we’ll discuss below.
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The order-reversing elements rkf ∈ Dn are called flips of Pn. It may seem intuitively
obvious, but all flips have order 2, as we shall now prove. We begin by proving that f 2 = e.
Suppose that f maps vertex 1 to the ith position. Then, because the vertex labels increase
in clockwise order, vertex i maps to the i− (i−1) = 1 position. Thus f 2 will map vertex i to
vertex i. Since it flips P over twice, the vertex labels must increase in the counterclockwise
order once again. Since one vertex has been fixed, this means they all are, so that f 2 = e, as
expected. The same reasoning applies to any element of Dn that reverses vertex label order,
so that (rkf)2 = e for all k. That is

e = (rkf)(rkf) = rk(frkf) ⇔ frkf = r−k. (2)

When k = 1, in particular we have
frf = r−1. (3)

Two observations are in order. First, since f was taken to be an arbitrary flip, (2) shows
that (3) actually holds for all rotations r and all flips f . Second, because conjugation is an
automorphism, the more general (2) is a consequence of (3).

The equation frf = r−1 can be rewritten as fr = r−1f . This gives us a rule for computing
products in Dn. Let x, y ∈ Dn and write x = rkf e, y = r`fd, as above. If e = 0, then
xy = rk+`fd, and k + ` can be reduced modulo n to get an element in (1). Otherwise, the
conjugation relation (3) implies that

xy = rkfr`fd = rk−`fd+1.

Now reduce k − ` modulo n and d+ 1 modulo 2 to once again get into (1). So we see that,
together with the orders of r and f , the conjugation relationship (3) completely determines
the group structure of Dn.

Hence Dn can be completely described in terms of the presentation

Dn = 〈r, f : |r| = n, |f | = 2, frf = r−1〉. (4)

Any group generated by two elements satisfying these relations must necessarily be isomor-
phic to Dn. As an example, we use the presentation (4) to prove a classification theorem for
groups of order 2p, where p is an odd prime.

Theorem 1. Let p be an odd prime and G a group of order 2p. Then G is either cyclic or
G ∼= Dp.

Proof. Suppose G is not cyclic. Note that since p is prime, this means every element of
G must have order 1, 2 or p. We must show that G ∼= Dp. We first claim that G has an
element of order p. If not, every nonidentity element of G has order 2, which makes G a
finite elementary abelian 2-group. Thus

G ∼= Z/2Z× Z/2Z× · · ·

for a finite number of copies of Z/2Z. But then |G| is a power of 2, which is impossible.

Let r ∈ G have order p and set H = 〈r〉. Since [G : H] = 2, H CG and G/H is a group
of order 2. Let f ∈ G \ H. Then we must have H = (fH)2 = f 2H so that f 2 ∈ H. We
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claim that f 2 = e and |f | = 2. If this were not the case, then since f 6= e, |f | = p, and p is
odd, we would find that

e = fp ⇒ f = fp+1 = (f 2)
p+1
2 ∈ H,

contrary to our choice of f . This proves that every element of G \H has order 2.

Now fix f ∈ G \H and notice that H and fH = Hf are the two disjoint cosets of H in
G. It follows that G = H ∪Hf = 〈r, f〉. Moreover, rf 6∈ H, so that by what we have shown
above, |rf | = 2. Hence

e = (rf)(rf) = r(frf) ⇔ frf = r−1.

So we finally find that

G = 〈r, f : |r| = p, |f | = 2, frf = r−1〉 ∼= Dp.

Let H and G be groups and suppose we have we have a homomorphism ψ : G→ Aut(H).
This generalizes the situation when HCG and we let G act on H by conjugation. To simplify
notation, write ψx for ψ(x). We define the semi-direct product of H and G to be the set
H ×G together with the following binary operation:

(a, x)×ψ (b, y) = (aψx(b), xy).4

It is not hard to see that (e, e′) is the identity under×ψ, and a somewhat tedious computation,
using that ψ is a homomorphism, verifies that ×ψ is associative. Finally, one can show that
the inverse of (a, x) under ×ψ is (ψx−1(a−1), x−1). That is, H ×G with ×ψ is a group.

The semi-direct product of H and G by ψ is denoted

H oψ G

or just HoG when ψ is clear from context. The semi-direct product generalizes the following
scenario, among others. Suppose G is a group, N C G, H < G and G = NH. H acts as
automorphism of N by conjugation and for n1, n2 ∈ N , h1, h2 ∈ H we have

(n1h1)(n2h2) = n1h1n2h
−1
1 h1h2 = (n1 h1n2h

−1
1︸ ︷︷ ︸

in N

)(h1h2).

So we have multiplied two elements of NH in the same way that we would multiply elements
of N oH, with H acting as inner automorphisms of N . If N ∩H = {e}, one can show that,
in fact, NH ∼= N oH in this way.

We can now use the semi-direct product to give a structural description of Dn.

Theorem 2. Let n ≥ 3. Choose r0 ∈ Dn of order n and let Rn = 〈r0〉 denote the subgroup
of rotations of Pn. Choose any flip f ∈ Dn \Rn. Then Rn CDn and

Dn = Rn oψ 〈f〉,
where ψf (r) = r−1 for all r ∈ Rn.5

4One of my favorite algebra professors once described this operation as the ordinary direct product, but with x “getting in
the way” of the multiplication in the first coordinate. This isn’t perhaps the best way to think about what this construction is
actually trying to accomplish, but it’s a good way to remember the formula for ×ψ .

5ψf “negates” in the abelian group Rn.
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Proof. Let H = 〈f〉. Because |r| = n, [Dn : Rn] = 2, so that RnCDn. Since we already know
that Dn = RnH and Rn ∩H = {e}, the preceding discussion tells us that Dn = Rn oψ H,
where ψ gives the conjugation action of H on Rn. Since the only nonidentity element of
H is f , it suffices to specify ψf (r) = frf−1 = frf = r−1 for all r ∈ Rn, by the comments
following (3).

As a final remark, we note that the semi-direct product includes the direct product as a
special case, namely when ψ ≡ 1H .
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