Dihedral Groups

R. C. Daileda

Let $n \geq 3$ be an integer and consider a regular closed n-sided polygon P_{n} in \mathbb{R}^{2}. Cut P free from \mathbb{R}^{2} along its edges, (rigidly) manipulate it in \mathbb{R}^{3}, and return P_{n} to fill the hole in \mathbb{R}^{2} that was left behind. This yields a bijection of P_{n} with itself, one that maps edges to edges, and pairs of adjacent vertices to adjacent vertices. The set of all such elements in Perm $\left(P_{n}\right)$ obtained in this way is called the dihedral group (of symmetries of P_{n}) and is denoted by $D_{n} .{ }^{1}$ We claim that D_{n} is a subgroup of $\operatorname{Perm}\left(P_{n}\right)$ of order $2 n$.

Since we can always just leave P_{n} unmoved, D_{n} contains the identity function. And since any manipulation of P_{n} in \mathbb{R}^{3} that yields an element of D_{n} can certainly be reversed, D_{n} contains the inverse of every one of its elements. And since manipulating P_{n} in \mathbb{R}^{3}, returning it to the plane, picking it up and manipulating it again, and then returning it once more to \mathbb{R}^{2}, can be considered a single 3-D manipulation, we find that D_{n} is closed under composition. This proves that D_{n} is a subgroup of $\operatorname{Perm}\left(P_{n}\right) .^{2}$

Now we need to count D_{n}. Every element of D_{n} can be described in terms of the final position of P_{n} after spatial manipulation. Before moving P_{n}, label its vertices with $1,2, \ldots, n$ in counterclockwise order, starting with some fixed vertex. Label the vertices of its "hole" (complement in \mathbb{R}^{2}) to match. After P_{n} has been manipulated and returned to the plane to yield an element of D_{n}, vertex 1 of P_{n} will be in the position of the complement vertex labelled i for some i, and the labels of the remaining vertices of P_{n} will either increase in clockwise or counterclockwise order. Since there are n positions where vertex 1 can land, and two possible orientations for the remaining labels, we find that there are at most $2 n$ final positions of P_{n} after being manipulated. Since it is clear that every such final orientation is possible to achieve, we conclude that $\left|D_{n}\right|=2 n$.

To describe D_{n} group theoretically, we need to construct some (fairly) specific elements of D_{n}. First, let $r \in D_{n}$ denote a counterclockwise rotation of P_{n} about its center by $2 \pi / n$ radians. It should be clear that as a transformation of P_{n}, r has order n. Now let $f \in D_{n}$ denote any manipulation that flips P_{n} "upside down" and then puts it back (in any way at all). This will put all of the labels of P_{n} in clockwise order. For any $0 \leq k \leq n-1, r^{k} f$ maintains this property, and no two of these are identical since $|r|=n$. The powers r^{k}, $0 \leq k \leq n-1$, on the other hand, preserve the original counterclockwise ordering on the vertices of P_{n}, and are also distinct. Thus,

$$
\begin{equation*}
D_{n}=\left\{r^{k} f^{e} \mid 0 \leq k \leq n-1, e \in\{0,1\}\right\}, \tag{1}
\end{equation*}
$$

and the exponents in each element are unique. ${ }^{3}$ In particular, r and f generate D_{n}.

[^0]The order-reversing elements $r^{k} f \in D_{n}$ are called flips of P_{n}. It may seem intuitively obvious, but all flips have order 2 , as we shall now prove. We begin by proving that $f^{2}=e$. Suppose that f maps vertex 1 to the i th position. Then, because the vertex labels increase in clockwise order, vertex i maps to the $i-(i-1)=1$ position. Thus f^{2} will map vertex i to vertex i. Since it flips P over twice, the vertex labels must increase in the counterclockwise order once again. Since one vertex has been fixed, this means they all are, so that $f^{2}=e$, as expected. The same reasoning applies to any element of D_{n} that reverses vertex label order, so that $\left(r^{k} f\right)^{2}=e$ for all k. That is

$$
\begin{equation*}
e=\left(r^{k} f\right)\left(r^{k} f\right)=r^{k}\left(f r^{k} f\right) \Leftrightarrow f r^{k} f=r^{-k} \tag{2}
\end{equation*}
$$

When $k=1$, in particular we have

$$
\begin{equation*}
f r f=r^{-1} \tag{3}
\end{equation*}
$$

Two observations are in order. First, since f was taken to be an arbitrary flip, (2) shows that (3) actually holds for all rotations r and all flips f. Second, because conjugation is an automorphism, the more general (2) is a consequence of (3).

The equation $f r f=r^{-1}$ can be rewritten as $f r=r^{-1} f$. This gives us a rule for computing products in D_{n}. Let $x, y \in D_{n}$ and write $x=r^{k} f^{e}, y=r^{\ell} f^{d}$, as above. If $e=0$, then $x y=r^{k+\ell} f^{d}$, and $k+\ell$ can be reduced modulo n to get an element in (1). Otherwise, the conjugation relation (3) implies that

$$
x y=r^{k} f r^{\ell} f^{d}=r^{k-\ell} f^{d+1}
$$

Now reduce $k-\ell$ modulo n and $d+1$ modulo 2 to once again get into (1). So we see that, together with the orders of r and f, the conjugation relationship (3) completely determines the group structure of D_{n}.

Hence D_{n} can be completely described in terms of the presentation

$$
\begin{equation*}
D_{n}=\langle r, f:| r\left|=n,|f|=2, f r f=r^{-1}\right\rangle . \tag{4}
\end{equation*}
$$

Any group generated by two elements satisfying these relations must necessarily be isomorphic to D_{n}. As an example, we use the presentation (4) to prove a classification theorem for groups of order $2 p$, where p is an odd prime.

Theorem 1. Let p be an odd prime and G a group of order $2 p$. Then G is either cyclic or $G \cong D_{p}$.

Proof. Suppose G is not cyclic. Note that since p is prime, this means every element of G must have order 1,2 or p. We must show that $G \cong D_{p}$. We first claim that G has an element of order p. If not, every nonidentity element of G has order 2 , which makes G a finite elementary abelian 2-group. Thus

$$
G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \cdots
$$

for a finite number of copies of $\mathbb{Z} / 2 \mathbb{Z}$. But then $|G|$ is a power of 2 , which is impossible.
Let $r \in G$ have order p and set $H=\langle r\rangle$. Since $[G: H]=2, H \triangleleft G$ and G / H is a group of order 2. Let $f \in G \backslash H$. Then we must have $H=(f H)^{2}=f^{2} H$ so that $f^{2} \in H$. We
claim that $f^{2}=e$ and $|f|=2$. If this were not the case, then since $f \neq e,|f|=p$, and p is odd, we would find that

$$
e=f^{p} \Rightarrow f=f^{p+1}=\left(f^{2}\right)^{\frac{p+1}{2}} \in H
$$

contrary to our choice of f. This proves that every element of $G \backslash H$ has order 2.
Now fix $f \in G \backslash H$ and notice that H and $f H=H f$ are the two disjoint cosets of H in G. It follows that $G=H \cup H f=\langle r, f\rangle$. Moreover, $r f \notin H$, so that by what we have shown above, $|r f|=2$. Hence

$$
e=(r f)(r f)=r(f r f) \Leftrightarrow \quad f r f=r^{-1}
$$

So we finally find that

$$
G=\langle r, f:| r\left|=p,|f|=2, f r f=r^{-1}\right\rangle \cong D_{p} .
$$

Let H and G be groups and suppose we have we have a homomorphism $\psi: G \rightarrow \operatorname{Aut}(H)$. This generalizes the situation when $H \triangleleft G$ and we let G act on H by conjugation. To simplify notation, write ψ_{x} for $\psi(x)$. We define the semi-direct product of H and G to be the set $H \times G$ together with the following binary operation:

$$
(a, x) \times_{\psi}(b, y)=\left(a \psi_{x}(b), x y\right) .^{4}
$$

It is not hard to see that $\left(e, e^{\prime}\right)$ is the identity under \times_{ψ}, and a somewhat tedious computation, using that ψ is a homomorphism, verifies that \times_{ψ} is associative. Finally, one can show that the inverse of (a, x) under \times_{ψ} is $\left(\psi_{x^{-1}}\left(a^{-1}\right), x^{-1}\right)$. That is, $H \times G$ with \times_{ψ} is a group.

The semi-direct product of H and G by ψ is denoted

$$
H \rtimes_{\psi} G
$$

or just $H \rtimes G$ when ψ is clear from context. The semi-direct product generalizes the following scenario, among others. Suppose G is a group, $N \triangleleft G, H<G$ and $G=N H$. H acts as automorphism of N by conjugation and for $n_{1}, n_{2} \in N, h_{1}, h_{2} \in H$ we have

$$
\left(n_{1} h_{1}\right)\left(n_{2} h_{2}\right)=n_{1} h_{1} n_{2} h_{1}^{-1} h_{1} h_{2}=(n_{1} \underbrace{h_{1} n_{2} h_{1}^{-1}}_{\text {in } N})\left(h_{1} h_{2}\right) .
$$

So we have multiplied two elements of $N H$ in the same way that we would multiply elements of $N \rtimes H$, with H acting as inner automorphisms of N. If $N \cap H=\{e\}$, one can show that, in fact, $N H \cong N \rtimes H$ in this way.

We can now use the semi-direct product to give a structural description of D_{n}.
Theorem 2. Let $n \geq 3$. Choose $r_{0} \in D_{n}$ of order n and let $R_{n}=\left\langle r_{0}\right\rangle$ denote the subgroup of rotations of P_{n}. Choose any flip $f \in D_{n} \backslash R_{n}$. Then $R_{n} \triangleleft D_{n}$ and

$$
D_{n}=R_{n} \rtimes_{\psi}\langle f\rangle,
$$

where $\psi_{f}(r)=r^{-1}$ for all $r \in R_{n} .{ }^{5}$

[^1]Proof. Let $H=\langle f\rangle$. Because $|r|=n,\left[D_{n}: R_{n}\right]=2$, so that $R_{n} \triangleleft D_{n}$. Since we already know that $D_{n}=R_{n} H$ and $R_{n} \cap H=\{e\}$, the preceding discussion tells us that $D_{n}=R_{n} \rtimes_{\psi} H$, where ψ gives the conjugation action of H on R_{n}. Since the only nonidentity element of H is f, it suffices to specify $\psi_{f}(r)=f r f^{-1}=f r f=r^{-1}$ for all $r \in R_{n}$, by the comments following (3).

As a final remark, we note that the semi-direct product includes the direct product as a special case, namely when $\psi \equiv 1_{H}$.

[^0]: ${ }^{1}$ Be aware that some authors use the notation $D_{2 n}$ for the same group.
 ${ }^{2}$ The author first heard this particular "physical" description of D_{n} from Matt Galla, a former Trinity mathematics student.
 ${ }^{3}$ This actually makes D_{n} a semi-direct product, which we'll discuss below.

[^1]: ${ }^{4}$ One of my favorite algebra professors once described this operation as the ordinary direct product, but with x "getting in the way" of the multiplication in the first coordinate. This isn't perhaps the best way to think about what this construction is actually trying to accomplish, but it's a good way to remember the formula for \times_{ψ}.
 ${ }^{5} \psi_{f}$ "negates" in the abelian group R_{n}.

