Modern Algebra

Exercise 1. Let

$$
G=\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \pm\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \pm\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\right\}
$$

a. Show that G is closed under matrix multiplication.
b. Prove that G is a group under matrix multiplication. Is it abelian?

Exercise 2. Let G be a group and $a, b, c \in G$. Prove the following cancellation laws.
a. If $a b=a c$, then $b=c$ (left cancellation).
b. If $a b=c b$, then $a=c($ right cancellation $)$.

Exercise 3. Let G be a group and $e_{0} \in G$. Given $x, y \in G$, define a new binary operation * on G by

$$
x * y=x e_{0}^{-1} y
$$

Prove that G is a group under $*$.

