Exercise 1. If $\sigma \in S_{n}$ and $\left(i_{1} i_{2} \cdots i_{r}\right) \in S_{n}$ is an r-cycle, show that

$$
\sigma\left(i_{1} i_{2} \cdots i_{r}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \cdots \sigma\left(i_{r}\right)\right) .
$$

Use this and the previous exercise to prove that all r-cycles are conjugate in S_{n}. [Suggestion: Prove the two permutations are equal by evaluating them both at every point, noting that every $j \in I_{n}$ can be written $j=\sigma(i)$ for some $i \in I_{n}$.]

Given $\sigma \in S_{n}$, write $\sigma=c_{1} c_{2} \ldots c_{k}$, where the c_{j} are disjoint cycles and every $i \in I_{n}$ occurs in exactly one c_{j} (we include 1-cycles). Reorder the cycles in σ so that $\ell\left(c_{1}\right) \geq \ell\left(c_{2}\right) \geq \cdots \geq$ $\ell\left(c_{k}\right)$, where $\ell(c)$ denotes the length of a cycle c. Finally, let

$$
\lambda(\sigma)=\left(\ell\left(c_{1}\right), \ell\left(c_{2}\right), \cdots, \ell\left(c_{k}\right)\right)
$$

Exercise 2. Prove that $\lambda(\sigma)$ is a partition of n, i.e. that the sum of the entries of $\lambda(\sigma)$ is n.

Exercise 3. Prove that $\lambda\left(\tau \sigma \tau^{-1}\right)=\lambda(\sigma)$ for all $\tau \in S_{n}$. [Suggestion: Write σ as a product of disjoint cycles and apply Exercise 1.]

Exercise 4. Prove that the converse of the result in the previous exercise also holds. That is, show that if $\tau \in S_{n}$ and $\lambda(\sigma)=\lambda(\tau)$, then σ and τ are conjugate in S_{n}. [Suggestion: If you write down the cycle decompositions of σ and τ, and appeal to Exercise 1, you can easily construct a permutation that conjugates σ into τ.]

