

Modern Algebra Spring 2019 Assignment 11.2 Due April 17

Exercise 1. Let C be an (additive) cyclic group of order n, generated by a, and suppose n = de for some $d, e \in \mathbb{N}$. Prove that

 $C_d = \langle ea \rangle$.

Exercise 2. Let p be a prime and let G be a group. We say that G is a p-group if the order of any element of G is a power of p.¹ Prove the following statements about a p-group G.

a. Let $x, y \in G$. If $m = \max\{|x|, |y|\}$, then $x^m = y^m = e$.

b. If $m = \max\{|x| : x \in G\}$ is finite, then m is an exponent for G.

Exercise 3. Given a prime p, an elementary abelian p-group is an abelian group in which every nonidentity element has order p.²

- **a.** Use the fundamental theorem of finite abelian p-groups (as we called it) to give a classification of all finite elementary abelian p-groups.
- **b.** Can you think of a countably infinite elementary abelian *p*-group? How about uncountable?

¹If G is finite and abelian, we have proven that this definition is equivalent to |G| being a power of p. If we assume only that G is finite, the same conclusion holds, but requires a different proof.

²Under modular arithmetic (addition and multiplication), the factor group $\mathbb{Z}/p\mathbb{Z}$ is a *field*, and the elementary abelian *p*-groups are precisely the $\mathbb{Z}/p\mathbb{Z}$ -vector spaces.