Modern Algebra
Assignment 11.2

Exercise 1. Let C be an (additive) cyclic group of order n, generated by a, and suppose $n=d e$ for some $d, e \in \mathbb{N}$. Prove that

$$
C_{d}=\langle e a\rangle .
$$

Exercise 2. Let p be a prime and let G be a group. We say that G is a p-group if the order of any element of G is a power of $p .{ }^{1}$ Prove the following statements about a p-group G.
a. Let $x, y \in G$. If $m=\max \{|x|,|y|\}$, then $x^{m}=y^{m}=e$.
b. If $m=\max \{|x|: x \in G\}$ is finite, then m is an exponent for G.

Exercise 3. Given a prime p, an elementary abelian p-group is an abelian group in which every nonidentity element has order $p .^{2}$
a. Use the fundamental theorem of finite abelian p-groups (as we called it) to give a classification of all finite elementary abelian p-groups.
b. Can you think of a countably infinite elementary abelian p-group? How about uncountable?

[^0]
[^0]: ${ }^{1}$ If G is finite and abelian, we have proven that this definition is equivalent to $|G|$ being a power of p. If we assume only that G is finite, the same conclusion holds, but requires a different proof.
 ${ }^{2}$ Under modular arithmetic (addition and multiplication), the factor group $\mathbb{Z} / p \mathbb{Z}$ is a field, and the elementary abelian p-groups are precisely the $\mathbb{Z} / p \mathbb{Z}$-vector spaces.

