Exercise 1. Given a prime p, let

$$
\begin{aligned}
\mathbb{Z}_{(p)} & =\left\{\left.\frac{r}{s} \right\rvert\, r \in \mathbb{Z}, s \in \mathbb{N}, p \nmid s\right\}, \\
\mathbb{Z}\left[p^{-\infty}\right] & =\left\{\left.\frac{r}{p^{t}} \right\rvert\, r \in \mathbb{Z}, t \in \mathbb{N}_{0}\right\} .
\end{aligned}
$$

Prove that $\mathbb{Z}_{(p)}$ and $\mathbb{Z}\left[p^{-\infty}\right]$ are (additive) subgroups of \mathbb{Q}.

Exercise 2. For $n \in \mathbb{N}$, let $\boldsymbol{\mu}_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$. Prove that $\boldsymbol{\mu}_{n}$ is a (multiplicative) subgroup of \mathbb{C}^{\times}.

Exercise 3. Given a complex number $z=x+i y(x, y \in \mathbb{R})$, define its complex conjugate to be $\bar{z}=x-i y$. Prove the following properties of conjugation.
a. For all $z, w \in \mathbb{C}, \overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \bar{w}$.
b. For any $z \in \mathbb{C}, z \bar{z}=|z|^{2}$.
c. For any $z \in \mathbb{C}, z=\bar{z}$ if and only if $z \in \mathbb{R}$.

Use parts a and \mathbf{b} to show that $|z w|=|z||w|$ for all $z, w \in \mathbb{C}$.

Exercise 4. Let G be a group and suppose that \mathcal{F} is a family of subgroups of G. Prove that

$$
J=\bigcap_{H \in \mathcal{F}} H
$$

is a subgroup of G.

