

Modern Algebra Spring 2019

Assignment 4.1 Due February 13

Exercise 1. Prove that $Z(\operatorname{GL}_2(\mathbb{R})) = \{aI \mid a \in \mathbb{R}^{\times}\}$. [Suggestion: It is clear that every matrix of the form aI belongs to the center. To prove the opposite inclusion, commute an element of the center with the matrices $\binom{1}{1}$ and $\binom{1}{1}$.]

Exercise 2. A group G is called *finitely generated* if there exist $x_1, x_2, \ldots, x_n \in G$ so that $G = \langle x_1, x_2, \ldots, x_n \rangle$.

- **a.** Prove that $\mathbb{Z}^n = \underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \text{ times}}$ can be generated by *n* elements, and no fewer (this requires a little bit of linear algebra).
- **b.** Prove that \mathbb{Q} is *not* finitely generated. [Suggestion: Argue by contradiction.]