Exercise 1. Let $f: G \rightarrow H$ be a homomorphism of groups.
a. If $J<G$, prove that $f(J)<H$.
b. If $K<H$, prove that $f^{-1}(K)<G$. ${ }^{1}$

Exercise 2. Let G be a group and let $\operatorname{Aut}(G)$ denote the set of automorphisms of G.
a. Prove that $\operatorname{Aut}(G)<\operatorname{Perm}(G)$.
b. Given $x \in G$, define $c_{x}: G \rightarrow G$ by $c_{x}(y)=x y x^{-1}$. Prove that $c_{x} \in \operatorname{Aut}(G)$. The map c_{x} is called conjugation by x.
c. Prove that the map $x \mapsto c_{x}$ from G to $\operatorname{Aut}(G)$ is a homomorphism. Its image is subgroup of inner automorphisms of G.

Exercise 3. Let $\phi: \mathbb{Q} \rightarrow \mathbb{Q}$ be an endomorphism of \mathbb{Q}. Prove that there exists an $a \in \mathbb{Q}$ so that $\phi(r)=a r$ for all $r \in \mathbb{Q}$. [Suggestion: Consider $\phi(1)$.]

[^0]
[^0]: ${ }^{1}$ Recall that given any function $f: X \rightarrow Y$ and any subset $S \subset Y$, the inverse image of S under f is

 $$
 f^{-1}(S)=\{x \in X \mid f(x) \in S\}
 $$

 The inverse image makes sense whether or not f is invertible. However, when f does happen to be invertible, $f^{-1}(S)$ is indeed the same as the forward image of S under f^{-1}, as the notation suggests.

