

Modern Algebra Spring 2019

Assignment 4.3 Due February 13

Exercise 1. Let $f : G \to H$ be a homomorphism of groups.

- **a.** If J < G, prove that f(J) < H.
- **b.** If K < H, prove that $f^{-1}(K) < G^{1}$.

Exercise 2. Let G be a group and let Aut(G) denote the set of automorphisms of G.

- **a.** Prove that $\operatorname{Aut}(G) < \operatorname{Perm}(G)$.
- **b.** Given $x \in G$, define $c_x : G \to G$ by $c_x(y) = xyx^{-1}$. Prove that $c_x \in Aut(G)$. The map c_x is called *conjugation by x*.
- **c.** Prove that the map $x \mapsto c_x$ from G to $\operatorname{Aut}(G)$ is a homomorphism. Its image is subgroup of *inner automorphisms* of G.

Exercise 3. Let $\phi : \mathbb{Q} \to \mathbb{Q}$ be an endomorphism of \mathbb{Q} . Prove that there exists an $a \in \mathbb{Q}$ so that $\phi(r) = ar$ for all $r \in \mathbb{Q}$. [Suggestion: Consider $\phi(1)$.]

$$f^{-1}(S) = \{ x \in X \mid f(x) \in S \}.$$

¹Recall that given any function $f: X \to Y$ and any subset $S \subset Y$, the *inverse image* of S under f is

The inverse image makes sense whether or not f is invertible. However, when f does happen to be invertible, $f^{-1}(S)$ is indeed the same as the forward image of S under f^{-1} , as the notation suggests.