

Modern Algebra Spring 2019

Exercise 1. Let G be the (additive) group of polynomials with real coefficients. For each $f \in G$, let $\int f$ denote the antiderivative of f whose graph passes through the point (0,0). Show that the mapping $f \mapsto \int f$ from G to G is a homomorphism. What is its kernel? Can (0,0) be replaced by any other point in \mathbb{R}^2 ?

Exercise 2. Define $f: D_4 \to \{\pm 1\}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is a rotation,} \\ -1 & \text{otherwise.} \end{cases}$$

Prove that f is a homomorphism. What is its kernel?

Exercise 3. Let A be an (additive) abelian group and B, C < A. Define $f : B \times C \to A$ by f(b, c) = b + c.

a. Prove that f is a homomorphism.

b. Use part **a** to prove that $B + C = \{b + c \mid b \in B, c \in C\}$ is a subgroup of A.

c. Compute ker f.

Assignment 5.1 Due February 20