Exercise 1. Let G be the (additive) group of polynomials with real coefficients. For each $f \in G$, let $\int f$ denote the antiderivative of f whose graph passes through the point $(0,0)$. Show that the mapping $f \mapsto \int f$ from G to G is a homomorphism. What is its kernel? Can $(0,0)$ be replaced by any other point in \mathbb{R}^{2} ?

Exercise 2. Define $f: D_{4} \rightarrow\{ \pm 1\}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is a rotation } \\ -1 & \text { otherwise }\end{cases}
$$

Prove that f is a homomorphism. What is its kernel?

Exercise 3. Let A be an (additive) abelian group and $B, C<A$. Define $f: B \times C \rightarrow A$ by $f(b, c)=b+c$.
a. Prove that f is a homomorphism.
b. Use part a to prove that $B+C=\{b+c \mid b \in B, c \in C\}$ is a subgroup of A.
c. Compute ker f.

