Exercise 1. Let A be an (additive) abelian group, $B_{1}, B_{2}, \ldots, B_{n}<A$. Define

$$
f: B_{1} \times B_{2} \times \cdots \times B_{n} \rightarrow A
$$

by $f\left(b_{1}, b_{2}, \ldots, b_{n}\right)=b_{1}+b_{2}+\cdots+b_{n}$.
a. Prove that f is a homomorphism. Use this to conclude that

$$
B_{1}+B_{2}+\cdots+B_{n}=\left\{b_{1}+b_{2}+\cdots+b_{n} \mid b_{i} \in B_{i}\right\}
$$

is a subgroup of A.
b. Prove that ker $f=\{0\}$ if and only if $\left(B_{1}+B_{2}+\cdots+\widehat{B_{i}}+\cdots+B_{n}\right) \cap B_{i}=\{0\}$ for all $1 \leq i \leq n$. Here the caret indicates the omission of the summand B_{i}.
c. Prove that ker $f=\{0\}$ if and only if $B_{i} \cap\left(B_{i+1}+\cdots+B_{n}\right)=\{0\}$ for all $1 \leq i \leq n-1$.

When ker $f=\{0\}, f$ provides an isomorphism between the external product $B_{1} \times B_{2} \times \cdots \times B_{n}$ and the internal sum $B_{1}+B_{2}+\cdots+B_{n}$. In this case we call the latter the (internal) direct sum and denote it by $B_{1} \oplus B_{2} \oplus \cdots \oplus B_{n}$.

Exercise 2. With A and B_{i} as above, prove that

$$
B_{1} \oplus B_{2} \oplus B_{3}=B_{1} \oplus\left(B_{2} \oplus B_{3}\right)=\left(B_{1} \oplus B_{2}\right) \oplus B_{3},
$$

i.e. the direct sum is associative. Yes, there really is something to prove here.

Exercise 3. Let $f: G \rightarrow H$ be a group homomorphism.
a. Prove that for any $a \in G$, the order of $f(a)$ divides the order of a.
b. Prove that if f is a monomorphism, then for any $a \in G, a$ and $f(a)$ have the same order.
c. Use part b (and an earlier result) to provide an alternate proof of the fact that for any $a, b \in G, a$ and $b a b^{-1}$ have the same order.

