

Modern Algebra Spring 2019 Assignment 6.1 Due February 27

Exercise 1. Let A be an (additive) abelian group, $B_1, B_2, \ldots, B_n < A$. Define

$$f: B_1 \times B_2 \times \cdots \times B_n \to A$$

by $f(b_1, b_2, \dots, b_n) = b_1 + b_2 + \dots + b_n$.

a. Prove that f is a homomorphism. Use this to conclude that

$$B_1 + B_2 + \dots + B_n = \{b_1 + b_2 + \dots + b_n \mid b_i \in B_i\}$$

is a subgroup of A.

- **b.** Prove that ker $f = \{0\}$ if and only if $(B_1 + B_2 + \dots + \widehat{B_i} + \dots + B_n) \cap B_i = \{0\}$ for all $1 \le i \le n$. Here the caret indicates the omission of the summand B_i .
- **c.** Prove that ker $f = \{0\}$ if and only if $B_i \cap (B_{i+1} + \cdots + B_n) = \{0\}$ for all $1 \le i \le n-1$.

When ker $f = \{0\}$, f provides an isomorphism between the *external* product $B_1 \times B_2 \times \cdots \times B_n$ and the *internal* sum $B_1 + B_2 + \cdots + B_n$. In this case we call the latter the *(internal)* direct sum and denote it by $B_1 \oplus B_2 \oplus \cdots \oplus B_n$.

Exercise 2. With A and B_i as above, prove that

$$B_1 \oplus B_2 \oplus B_3 = B_1 \oplus (B_2 \oplus B_3) = (B_1 \oplus B_2) \oplus B_3,$$

i.e. the direct sum is associative. Yes, there really is something to prove here.

Exercise 3. Let $f: G \to H$ be a group homomorphism.

- **a.** Prove that for any $a \in G$, the order of f(a) divides the order of a.
- **b.** Prove that if f is a monomorphism, then for any $a \in G$, a and f(a) have the same order.
- **c.** Use part **b** (and an earlier result) to provide an alternate proof of the fact that for any $a, b \in G$, a and bab^{-1} have the same order.