

Modern Algebra Spring 2019 Assignment 6.2 Due February 27

Exercise 1. Show that every coset of \mathbb{R}^+ in \mathbb{C}^\times contains a unique element of absolute value equal to 1. Conversely, show that every coset of $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ in \mathbb{C}^\times contains a unique positive real number. In both cases, describe the cosets geometrically.

Exercise 2. Let G be a group and $S \subset G$. Given $x, y \in G$, define $x \sim y$ by the condition $xy^{-1} \in S$. Prove that if \sim is an equivalence relation on G, then S < G.

Exercise 3. Prove that \mathbb{Q} has an uncountable number of cosets in \mathbb{R} . [Suggestion: Argue by contradiction.]