

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2019 \end{array}$

Assignment 7.3 Due March 6

Exercise 1. Let G be a group and H < G. The normalizer of H in G is

$$N_G(H) = \{ x \in G \, | \, xHx^{-1} = H \}.$$

- **a.** Prove that $N_G(H)$ is a subgroup of G containing H, and that H is normal in $N_G(H)$.
- **b.** Prove that the set $\{xHx^{-1} | x \in G\}$ of conjugates of H is in one to one correspondence with the left cosets of $N_G(H)$ in G.

Exercise 2. Let G be a group and H < G. The *centralizer of* H in G is

$$Z_G(H) = \{ x \in G \mid xy = yx \text{ for all } y \in H \}.$$

Prove that $Z_G(H)$ is a normal subgroup of $N_G(H)$.

Exercise 3. Let G be a group, H < G. Recall the homomorphism $T : G \to \text{Perm}(G/H)$ of Lang, II.4.28, which is defined by $x \mapsto T_x$, where $T_x(yH) = xyH$. Prove that

$$\ker T = \bigcap_{x \in G} x H x^{-1},$$

the so-called *normal core* of H.