

Modern Algebra Spring 2019 Assignment 8.1 Due March 20

**Exercise 1.** Let  $G_1$  and  $G_2$  be groups, with  $H_1 \triangleleft G_1$  and  $H_2 \triangleleft G_2$ . Use the First Isomorphism Theorem to prove that  $H_1 \times H_2 \triangleleft G_1 \times G_2$  and

$$(G_1 \times G_2)/(H_1 \times H_2) \cong (G_1/H_1) \times (G_2/H_2).$$

[Suggestion: Use the canonical epimorphisms  $G_i \to G_i/H_i$  to construct a homomorphism  $G_1 \times G_2 \to (G_1/H_1) \times (G_2/H_2)$ , and compute its kernel.]

**Exercise 2.** Let  $m, n \in \mathbb{N}$  be relatively prime. Use the First Isomorphism Theorem to prove the Chinese Remainder Theorem:

$$\mathbb{Z}/mn\mathbb{Z} \cong (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}).$$

[Suggestion: Use the canonical epimorphisms from  $\mathbb{Z}$  onto  $\mathbb{Z}/m\mathbb{Z}$  and  $\mathbb{Z}/n\mathbb{Z}$  to construct a homomorphism  $\mathbb{Z} \to (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$ , and compute its kernel. Use the Pigeonhole Principle to prove that the induced monomorphism is surjective.]

**Exercise 3.** Let G be a group, H < G and  $N \triangleleft G$ . Prove the Second Isomorphism Theorem:

$$H/(H \cap N) \cong HN/N.$$

[Suggestion: Compose the inclusion  $H \hookrightarrow HN$  with the canonical surjection  $HN \to HN/N$ , and compute the kernel. You'll need a separate argument to show that the induced monomorphism is surjective.]