

Modern Algebra Spring 2019 Assignment 9.1 Due March 27

Exercise 1. Let G be a group and H < G. Recall that for each $x \in G$, the left-translation map $T_x : G/H \to G/H^1$ given by $yH \mapsto xyH$ is an element of Perm(G/H), and that the map $x \mapsto T_x$ is a homomorphism $G \to \text{Perm}(G/H)$. Let K denote the kernel of this homomorphism.

Assume that G is finite and [G:H] = p is the smallest prime dividing |G|.

- **a.** Use the first the First Isomorphism Theorem to show that [G:K] divides p.
- **b.** Use the fact that K < H to show that [G : K] is divisible by p.
- **c.** Conclude that [G:K] = p and use this to show $H \triangleleft G$.

Exercise 2. Let G be a nonabelian group of order 8.

- **a.** Explain why G must have an element of order 4.
- **b.** Let $x \in G$ have order 4 and $H = \langle x \rangle$. Show that [G:H] = 2 and conclude that $H \triangleleft G$.
- **c.** Let $y \in G \setminus H$. Show that $G = \langle x, y \rangle$ and $y^2 \in H$. Conclude that $y^2 = e$ and |y| = 2, or $y^2 = x^2$ and |y| = 4. [Suggestion: Show that $y^2 = x$ and $y^2 = x^3$ both imply $x^2 = e$.]
- **d.** Prove that $yxy^{-1} = x$ or $yxy^{-1} = x^3$. Show that the former is impossible since it implies G is abelian. [Suggestion: H is normal in G and conjugation preserves orders of elements.]

Exercise 3. Let everything be as in the preceding exercise.

a. If $y^2 = e$, prove that G is isomorphic to the dihedral group

$$D_4 = \langle r, f : |r| = 4, |f| = 2, frf = r^{-1} \rangle.$$

b. If $y^2 = x^2$, prove that G isomorphic to the quaternion group

$$Q = \langle i, j : |i| = |j| = |ij| = 4, i^2 = j^2 = (ij)^2 \rangle.$$

¹Here G/H simply indicates the set of left cosets of H in G. We are *not* assuming $H \lhd G$.