Assignment 9.1

Exercise 1. Let G be a group and $H<G$. Recall that for each $x \in G$, the left-translation map $T_{x}: G / H \rightarrow G / H^{1}$ given by $y H \mapsto x y H$ is an element of $\operatorname{Perm}(G / H)$, and that the map $x \mapsto T_{x}$ is a homomorphism $G \rightarrow \operatorname{Perm}(G / H)$. Let K denote the kernel of this homomorphism.

Assume that G is finite and $[G: H]=p$ is the smallest prime dividing $|G|$.
a. Use the first the First Isomorphism Theorem to show that $[G: K]$ divides p.
b. Use the fact that $K<H$ to show that $[G: K]$ is divisible by p.
c. Conclude that $[G: K]=p$ and use this to show $H \triangleleft G$.

Exercise 2. Let G be a nonabelian group of order 8 .
a. Explain why G must have an element of order 4.
b. Let $x \in G$ have order 4 and $H=\langle x\rangle$. Show that $[G: H]=2$ and conclude that $H \triangleleft G$.
c. Let $y \in G \backslash H$. Show that $G=\langle x, y\rangle$ and $y^{2} \in H$. Conclude that $y^{2}=e$ and $|y|=2$, or $y^{2}=x^{2}$ and $|y|=4$. [Suggestion: Show that $y^{2}=x$ and $y^{2}=x^{3}$ both imply $x^{2}=e$.]
d. Prove that $y x y^{-1}=x$ or $y x y^{-1}=x^{3}$. Show that the former is impossible since it implies G is abelian. [Suggestion: H is normal in G and conjugation preserves orders of elements.]

Exercise 3. Let everything be as in the preceding exercise.
a. If $y^{2}=e$, prove that G is isomorphic to the dihedral group

$$
D_{4}=\langle r, f:| r\left|=4,|f|=2, f r f=r^{-1}\right\rangle
$$

b. If $y^{2}=x^{2}$, prove that G isomorphic to the quaternion group

$$
Q=\langle i, j:| i\left|=|j|=|i j|=4, i^{2}=j^{2}=(i j)^{2}\right\rangle .
$$

[^0]
[^0]: ${ }^{1}$ Here G / H simply indicates the set of left cosets of H in G. We are not assuming $H \triangleleft G$.

