

Modern Algebra Spring 2019 Assignment 9.2 Due March 27

Exercise 1. Express each of the following permutations as products of disjoint cycles (you may feel free to omit 1-cycles) and as products of transpositions.

a.	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\frac{2}{5}$	$\frac{3}{4}$	$\frac{4}{2}$	$\frac{5}{8}$	$\frac{6}{7}$	$7 \\ 6$	$\binom{8}{3}$				
b.	$\begin{pmatrix} 1\\ 10 \end{pmatrix}$	2 9	$\frac{3}{1}$	$\frac{4}{5}$	$5 \\ 2$	$6 \\ 7$	7 8	8 6	9 4	1(3	$\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	
c.	$\begin{pmatrix} 1\\7 \end{pmatrix}$	2 6	$\frac{3}{8}$	$\begin{array}{c} 4 \\ 1 \end{array}$	5 9		7 4	8 2	$\binom{9}{3}$			
d.	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	$2 \\ 2$	3 11	4)	5 10	$\frac{6}{8}$	$7 \\ 6$	$\frac{8}{7}$	$9\\4$	$\begin{array}{c} 10\\ 5\end{array}$	$\begin{array}{c} 11 \\ 3 \end{array}$

Exercise 2. Let $\sigma \in S_n$ and suppose $\sigma = c_1 c_2 \cdots c_k$, where c_1, c_2, \ldots, c_k are disjoint cycles.

- **a.** Explain why $\sigma^m = \text{Id}$ if and only if $c_i^m = \text{Id}$ for all *i*.
- **b.** If $\ell(c)$ denotes the length of a cycle c, prove that

$$|\sigma| = \operatorname{lcm}(\ell(c_1), \ell(c_2), \dots, \ell(c_k)).$$

Exercise 3. Determine the order of each permutation in Exercise 1.