

Intro to Abstract Mathematics Spring 2020

Assignment 3.2 Due February 12

Exercise 1. Let $a, b \in \mathbb{N}$. The greatest common divisor of a and b, denoted gcd(a, b), is defined to be the greatest element in the set $\{d \in \mathbb{N} \mid d \text{ divides both } a \text{ and } b\}$. Prove that gcd(a, b) = gcd(a+b, a). [Suggestion: Show that the sets defining the two gcds are the same.]

Exercise 2. The symmetric difference of two sets A and B is defined to be

 $A\Delta B = (A \setminus B) \cup (B \setminus A).$

Verify the following properties of the symmetric difference.

- **a.** $A\Delta B = B\Delta A$. **b.** $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- **c.** $A\Delta B = A \cup B$ if and only if A and B are disjoint.

Exercise 3. Let A, B, C be sets.

a. Show that

 $(A\Delta B)\Delta C = [(A \cup B \cup C) \setminus ((A \cap B) \cup (A \cap C) \cup (B \cap C))] \cup (A \cap B \cap C).$

- **b.** Conclude that $(A\Delta B)\Delta C = (B\Delta C)\Delta A$.
- **c.** Use **2a** and part **b** to show that $(A\Delta B)\Delta C = A\Delta(B\Delta C)$.