Intro to Abstract Mathematics
Assignment 3.2
Spring 2020
Due February 12

Exercise 1. Let $a, b \in \mathbb{N}$. The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$, is defined to be the greatest element in the set $\{d \in \mathbb{N} \mid d$ divides both a and $b\}$. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b, a)$. [Suggestion: Show that the sets defining the two gcds are the same.]

Exercise 2. The symmetric difference of two sets A and B is defined to be

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Verify the following properties of the symmetric difference.
a. $A \Delta B=B \Delta A$.
b. $A \Delta B=(A \cup B) \backslash(A \cap B)$.
c. $A \Delta B=A \cup B$ if and only if A and B are disjoint.

Exercise 3. Let A, B, C be sets.
a. Show that

$$
(A \Delta B) \Delta C=[(A \cup B \cup C) \backslash((A \cap B) \cup(A \cap C) \cup(B \cap C))] \cup(A \cap B \cap C) .
$$

b. Conclude that $(A \Delta B) \Delta C=(B \Delta C) \Delta A$.
c. Use $2 \mathbf{2}$ and part \mathbf{b} to show that $(A \Delta B) \Delta C=A \Delta(B \Delta C)$.

