Exercise 1. Reproduce the following expression in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$:

$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\sum_{j=1}^{m_{n}} \frac{1}{j}\left(\frac{z}{a_{n}}\right)^{j}} .
$$

Exercise 2. Reproduce the following equation in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$:

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right) .
$$

[Suggestion: Use the matrix environment.]

Exercise 3. Reproduce the following theorem statement in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$:
Theorem 1 (Rank-Nullity Theorem). If $T: V \rightarrow W$ is a linear transformation of finite dimensional vector spaces, then

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{im} T
$$

Exercise 4. Write a truth table in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to prove that $P \wedge(Q \wedge R) \cong(P \wedge Q) \wedge R$.

