

Intro to Abstract Mathematics Spring 2020

Assignment 8.1 Due April 1

Exercise 1. Let $m \in \mathbb{N}^+$. Suppose $n \in \mathbb{Z}$ and n < 0. Show that there exist $q, r \in \mathbb{Z}$ so that

$$n = qm + r$$
 and $0 \le r < m$.

[Suggestion: Apply the division algorithm to -n or -n-1.]

Exercise 2. Let $m, n \in \mathbb{N}^+$. Use the division algorithm to write n = qm + r with $q, r \in \mathbb{N}$ and $0 \leq r < m$. Prove that gcd(m, n) = gcd(r, m).¹ [Suggestion: Proceed as in Exercise 3.2.1.]

¹This is the basis of the *Euclidean algorithm*, the most efficient way known to compute greatest common divisors.