Exercise 1. Consider the sequence $a_{0}, a_{1}, a_{2}, \ldots$ of real numbers defined by

$$
\begin{aligned}
a_{0} & =0 \\
a_{n+1} & =a_{n}^{2}+\frac{1}{4} \text { for all } n \in \mathbb{N} .
\end{aligned}
$$

a. Compute a_{1}, a_{2} and a_{3}.
b. Use induction to prove that $0<a_{n}<1 / 2$ for all $n \geq 1$.
c. Prove that $a_{n+1}>a_{n}$ for all $n \in \mathbb{N}$. [Suggestion: First prove that $x^{2}+1 / 4>x$ for all real $x \neq 1 / 2$.]

Exercise 2. Prove that for all $n \geq 1, \sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2-\frac{1}{n}$.

