

Intro to Abstract Mathematics Spring 2020

Assignment 9.1 Due April 8

Exercise 1. Consider the sequence a_0, a_1, a_2, \ldots of real numbers defined by

$$a_0 = 0,$$

 $a_{n+1} = a_n^2 + \frac{1}{4}$ for all $n \in \mathbb{N}.$

- **a.** Compute a_1 , a_2 and a_3 .
- **b.** Use induction to prove that $0 < a_n < 1/2$ for all $n \ge 1$.
- **c.** Prove that $a_{n+1} > a_n$ for all $n \in \mathbb{N}$. [Suggestion: First prove that $x^2 + 1/4 > x$ for all real $x \neq 1/2$.]

Exercise 2. Prove that for all $n \ge 1$, $\sum_{k=1}^{n} \frac{1}{k^2} \le 2 - \frac{1}{n}$.