# An Introduction to LATEX

Ryan C. Daileda



Trinity University

Intro to Abstract Math February 24, 2020

 LATEX is a typesetting system/language used for the production of technical (mathematical) documentation.

- LATEX is a typesetting system/language used for the production of technical (mathematical) documentation.
- In mathematics and other disciplines, LATEX is the standard for the preparation of presentations, publications, and other documents.

- LATEX is a typesetting system/language used for the production of technical (mathematical) documentation.
- In mathematics and other disciplines, LATEX is the standard for the preparation of presentations, publications, and other documents.
- Unlike WYSIWYG word processors like Microsoft Word, LATEX uses source files (.tex files) written in specialized syntax that are then translated by a LATEX compiler into output documents (e.g. .pdf or .dvi files) suitable for publication.

- LATEX is a typesetting system/language used for the production of technical (mathematical) documentation.
- In mathematics and other disciplines, LATEX is the standard for the preparation of presentations, publications, and other documents.
- Unlike WYSIWYG word processors like Microsoft Word, LATEX uses source files (.tex files) written in specialized syntax that are then translated by a LATEX compiler into output documents (e.g. .pdf or .dvi files) suitable for publication.
- "Complicated" technical documents are much more easily produced using LATEX than a traditional word processor.

• LATEX source files can be created using any text editor.

- LATEX source files can be created using any text editor.
- MiKTeX and TeX Live are LaTeX compilers freely available online.

- LATEX source files can be created using any text editor.
- MiKTeX and TeX Live are LaTeX compilers freely available online.
- There are also combined editor/compiler packages available:

- LATEX source files can be created using any text editor.
- MiKTeX and TeX Live are LaTeX compilers freely available online.
- There are also combined editor/compiler packages available:
  - \* TeXShop and MacTeX for Mac OS,

- LATEX source files can be created using any text editor.
- MiKTeX and TeX Live are LaTeX compilers freely available online.
- There are also combined editor/compiler packages available:
  - \* TeXShop and MacTeX for Mac OS, or TeXstudio and proTeXt for Windows

- LATEX source files can be created using any text editor.
- MiKTeX and TeX Live are LaTeX compilers freely available online.
- There are also combined editor/compiler packages available:
  - \* TeXShop and MacTeX for Mac OS, or TeXstudio and proTeXt for Windows can be downloaded for free.

- LATEX source files can be created using any text editor.
- MiKTeX and TeX Live are LaTeX compilers freely available online.
- There are also combined editor/compiler packages available:
  - \* TeXShop and MacTeX for Mac OS, or TeXstudio and proTeXt for Windows can be downloaded for free.
  - \* Other packages, such as WinEdt for Windows, can be purchased for a small fee.

For the price of an email address, an online editor/compiler is available through

www.overleaf.com.

For the price of an email address, an online editor/compiler is available through

www.overleaf.com.

After logging in to **www.overleaf.com**, click on and choose "Blank Project."

New Project

For the price of an email address, an online editor/compiler is available through

www.overleaf.com.

After logging in to www.overleaf.com, click on and choose "Blank Project."

New Project

Give your project a name.

For the price of an email address, an online editor/compiler is available through

www.overleaf.com.

After logging in to www.overleaf.com, click on (and choose "Blank Project."

New Project

Give your project a name.

A simple generic LATEX document is created.

For the price of an email address, an online editor/compiler is available through

www.overleaf.com.

After logging in to **www.overleaf.com**, click on and choose "Blank Project."

New Project

Give your project a name.

A simple generic LATEX document is created. The source appears on the left, the compiled document on the right.



## "Blank Project" Source

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\title{My Project}
\author{My Name}
\date{February 2020}
\begin{document}
\maketitle
\section{Introduction}
\end{document}
```

Inline mathematical expressions are enclosed by a pair of \$.

Inline mathematical expressions are enclosed by a pair of \$.

Let P and Q be statements.

• Let \$P\$ and \$Q\$ be a statements.

Inline mathematical expressions are enclosed by a pair of \$.

Let P and Q be statements.

• Let \$P\$ and \$Q\$ be a statements.

Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

Inline mathematical expressions are enclosed by a pair of \$.

Let P and Q be statements.

• Let \$P\$ and \$Q\$ be a statements.

Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

• Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

Inline mathematical expressions are enclosed by a pair of \$.

Let P and Q be statements.

• Let \$P\$ and \$Q\$ be a statements.

Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

• Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

If  $a \neq b$ , then  $\sqrt{ab} < \frac{a+b}{2}$ .

Inline mathematical expressions are enclosed by a pair of \$.

Let P and Q be statements.

• Let \$P\$ and \$Q\$ be a statements.

Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

• Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

If  $a \neq b$ , then  $\sqrt{ab} < \frac{a+b}{2}$ .

• If \$a \ne b\$, then \$\sqrt{ab} < \frac{a+b}{2}\$.



Inline mathematical expressions are enclosed by a pair of \$.

Let P and Q be statements.

• Let \$P\$ and \$Q\$ be a statements.

Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

• Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

If  $a \neq b$ , then  $\sqrt{ab} < \frac{a+b}{2}$ .

• If \$a \ne b\$, then \$\sqrt{ab} < \frac{a+b}{2}\$.

We claim that  $x_n \to 0$  as  $n \to \infty$ .



Inline mathematical expressions are enclosed by a pair of \$.

Let P and Q be statements.

• Let \$P\$ and \$Q\$ be a statements.

Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

• Suppose that  $f(x) = e^{3x} - x^2 + 3$ .

If  $a \neq b$ , then  $\sqrt{ab} < \frac{a+b}{2}$ .

• If \$a \ne b\$, then \$\sqrt{ab} < \frac{a+b}{2}\$.

We claim that  $x_n \to 0$  as  $n \to \infty$ .

• We claim that  $x_n \to 0$  as  $n \to \inf y$ .



• Macros and special characters have the form \symbolname.

- Macros and special characters have the form \symbolname.
- Whitespace is ignored.

- Macros and special characters have the form \symbolname.
- Whitespace is ignored.
- Curly braces {...} are used to group symbols, and are not typeset.

- Macros and special characters have the form \symbolname.
- Whitespace is ignored.
- Curly braces {...} are used to group symbols, and are not typeset.
- The arguments to superscripts (^), subscripts (\_) and other commands should be enclosed in curly braces:

- Macros and special characters have the form \symbolname.
- Whitespace is ignored.
- Curly braces {...} are used to group symbols, and are not typeset.
- The arguments to superscripts (^), subscripts (\_) and other commands should be enclosed in curly braces:

e^2x yields 
$$e^2x$$



- Macros and special characters have the form \symbolname.
- Whitespace is ignored.
- Curly braces {...} are used to group symbols, and are not typeset.
- The arguments to superscripts (^), subscripts (\_) and other commands should be enclosed in curly braces:

e^2x yields 
$$e^2x$$
 e^{2x} yields  $e^{2x}$ 

$$A = {(x,y) | e^{xy} = 1}$$
 yields

$$A = (x, y)|e^{xy} = 1$$

$$A = {(x,y) | e^{xy} = 1}$$
 yields

$$A = (x, y)|e^{xy} = 1$$

$$A = \{ (x,y) \mid e^{xy} = 1 \}$$
 yields

$$A = \{(x, y) | e^{xy} = 1\}$$

$$A = {(x,y) | e^{xy} = 1}$$
 yields

$$A = (x, y)|e^{xy} = 1$$

$$A = \{ (x,y) \mid e^{xy} = 1 \}$$
 yields

$$A = \{(x, y) | e^{xy} = 1\}$$

To insert text in math mode, use \text or \mbox:

$$A = {(x,y) | e^{xy} = 1}$$
 yields

$$A = (x, y)|e^{xy} = 1$$

$$A = \{ (x,y) \mid e^{xy} = 1 \}$$
 yields

$$A = \{(x, y) | e^{xy} = 1\}$$

• To insert text in math mode, use \text or \mbox:

 $E = \{ n \in \mathbb{Z} \ , \ | \ , n \in \}$  vields

$$E = \{ n \in \mathbb{Z} \, | \, n \text{ is even} \}$$

• The greek alphabet:

• The greek alphabet:  $\alpha, \beta, \gamma, \Gamma, \delta, \Delta$ 

• The greek alphabet:  $\alpha,\beta,\gamma,\Gamma,\delta,\Delta$  \$\alpha, \beta, \gamma, \Gamma, \delta, \Delta\$

- The greek alphabet:  $\alpha,\beta,\gamma,\Gamma,\delta,\Delta$  \$\alpha, \beta, \gamma, \Gamma, \delta, \Delta\$
- Special functions:

- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$

- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$  \$\sin x, \\cos x, \\log x, \\sqrt{x}, \\sqrt[n]{x}\$

- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$  \$\sin x, \\cos x, \\log x, \\sqrt{x}, \\sqrt[n]{x}\$
- Blackboard bold:

- The greek alphabet:  $\alpha,\beta,\gamma,\Gamma,\delta,\Delta$  \$\alpha, \beta, \gamma, \Gamma, \delta, \Delta\$
- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$  \$\sin x, \\cos x, \\log x, \\sqrt{x}, \\sqrt[n]{x}\$
- Blackboard bold:  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$

- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$  \$\sin x, \\cos x, \\log x, \\sqrt{x}, \\sqrt[n]{x}\$

- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$  \$\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}\$
- Ellipsis:



- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$ \$\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}\$
- Ellipsis:  $a_1, a_2, \ldots, a_n$



- Special functions:  $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$ \$\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}\$
- Ellipsis:  $a_1, a_2, \dots, a_n$  $a_1, a_2, \ldots, a_n$



$$\sum_{n=1}^{\int \int {n^2}=\frac{n^2}{6}}$$
 yields

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 yields 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 And 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 yields 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 yields

$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{6} \\ & \text{yields} \\ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 And 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \\ & \text{yields} \\ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 yields 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \\ & \text{yields} \\ \sum_{n=1}^{\infty} \frac{x^3}{5} \\ & \text{dx} \end{array}$$

Expressions including summations, fractions, integrals, etc. can look "uncomfortable" when typeset inline.

There are two ways around this.

Expressions including summations, fractions, integrals, etc. can look "uncomfortable" when typeset inline.

$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 yields 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 And 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 yields 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{array}$$
 yields 
$$\begin{array}{l} \sum_{n=1}^{\infty} \frac{x^3}{6} dx. \end{array}$$

There are two ways around this.

**Option 1:** Use **display mode** by enclosing expressions between  $\[$  and  $\]$ .



Expressions including summations, fractions, integrals, etc. can look "uncomfortable" when typeset inline.

yields  $\int_{-2}^{10} \frac{x^3}{5} dx$ .

There are two ways around this.

**Option 1:** Use **display mode** by enclosing expressions between \[ and \].

Option 2: Use \displaystyle.



```
An equation in display mode: 
 \[ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. 
 \]
```

An equation in display mode:  $\label{limit} $$ \sum_{n=1}^{\int \int x_n^2} = \frac{\pi^2}{6}.$ 

An equation in display mode:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

An equation in display mode:  $\label{limit} $$ \sum_{n=1}^{\int \int (1)^2} = \frac{\pi^2}{6}.$ 

An equation in display mode:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

A large inline expression:  $\frac{-2}^{10} \frac{x^3}{5} dx$ .

An equation in display mode: \[ \sum\_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \]

An equation in display mode:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

A large inline expression:  $\displaystyle \frac{-2}^{10} \frac{x^3}{5} dx$ .

A large inline expression:  $\int_{0}^{10} \frac{x^3}{5} dx.$ 

There's no need to start a document "from scratch" every time: it's usually more efficient to modify an existing file.

There's no need to start a document "from scratch" every time: it's usually more efficient to modify an existing file.

 overleaf.com offers a number of document templates and examples of papers, presentations, etc.

There's no need to start a document "from scratch" every time: it's usually more efficient to modify an existing file.

- overleaf.com offers a number of document templates and examples of papers, presentations, etc.
- Your professors probably have templates or sample .tex files they may be willing to share...

There's no need to start a document "from scratch" every time: it's usually more efficient to modify an existing file.

- overleaf.com offers a number of document templates and examples of papers, presentations, etc.
- Your professors probably have templates or sample .tex files they may be willing to share...

Today we will be using the file in-class.tex.



• Download the file in-class.zip from Dr. Daileda's website: ramanujan.math.trinity.edu/rdaileda/abstract

 Download the file in-class.zip from Dr. Daileda's website: ramanujan.math.trinity.edu/rdaileda/abstract

• Click the upload button (in the top left corner).



• Download the file in-class.zip from Dr. Daileda's website: ramanujan.math.trinity.edu/rdaileda/abstract

• Click the upload button (in the top left corner).



Locate in-class.zip and drag it into the pop-up window

 Download the file in-class.zip from Dr. Daileda's website: ramanujan.math.trinity.edu/rdaileda/abstract

• Click the upload button (in the top left corner).



 Locate in-class.zip and drag it into the pop-up window (or click the "Select from your computer" button and do it the old fashioned way).

- Download the file in-class.zip from Dr. Daileda's website: ramanujan.math.trinity.edu/rdaileda/abstract
- Click the upload button (in the top left corner).
- Locate in-class.zip and drag it into the pop-up window (or click the "Select from your computer" button and do it the old fashioned way).
- After a few moments, in-class.zip will open in the editing (left) pane.

(a) 
$$f(x) = \sqrt[3]{x^3 + 1}$$

(a) 
$$f(x) = \sqrt[3]{x^3 + 1}$$

• 
$$f(x) = \sqrt{3}{x^3 + 1}$$

(a) 
$$f(x) = \sqrt[3]{x^3 + 1}$$

• 
$$f(x) = \sqrt{3}{x^3 + 1}$$

(b) 
$$\frac{dy}{dx} = \tan x + x^{4/3}$$

After adjusting the title and changing the author's name to your own, scroll to the appropriate regions and code the following:

(a) 
$$f(x) = \sqrt[3]{x^3 + 1}$$

• 
$$f(x) = \sqrt{3}{x^3 + 1}$$

(b) 
$$\frac{dy}{dx} = \tan x + x^{4/3}$$

•  $\displaystyle \frac{dy}{dx} = \tan x + x^{4/3}$ 



(c) 
$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$$

(c) 
$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$$

• \$\displaystyle \Gamma(s) = \int\_0^{\infty}
e^{-x} x^{s-1} \, dx\$

#### Consider the expression

$$\left(\frac{x}{2} + \frac{y}{3}\right)^2.$$

Consider the expression

$$\left(\frac{x}{2} + \frac{y}{3}\right)^2$$
.

$$(\frac{x}{2} + \frac{y}{2})^2,$$

Consider the expression

$$\left(\frac{x}{2} + \frac{y}{3}\right)^2$$
.

$$[ ( frac{x}{2} + frac{y}{2} )^2 ]$$
 yields

$$(\frac{x}{2} + \frac{y}{2})^2,$$

which is clearly unsatisfactory.

Consider the expression

$$\left(\frac{x}{2} + \frac{y}{3}\right)^2$$
.

 $[ ( frac{x}{2} + frac{y}{2} )^2 ]$  yields

$$(\frac{x}{2} + \frac{y}{2})^2,$$

which is clearly unsatisfactory.

Use \left and \right to scale parentheses (and other delimiters):



Consider the expression

$$\left(\frac{x}{2} + \frac{y}{3}\right)^2$$
.

$$[ ( frac{x}{2} + frac{y}{2} )^2 ]$$
 yields

$$(\frac{x}{2} + \frac{y}{2})^2,$$

which is clearly unsatisfactory.

Use \left and \right to scale parentheses (and other delimiters):

$$\[ \left( \frac{x}{2} + \frac{y}{3} \right)^2 \]$$



A matrix can be built using the array environment.

A matrix can be built using the array environment.

A matrix can be built using the array environment.

The & is an alignment tab, and \\ indicates the end of a row.



Code the following

$$\mathbf{a} \times \mathbf{b} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right|$$

Code the following

$$\mathbf{a} \times \mathbf{b} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right|$$

```
\[
\mathbf{a} \times \mathbf{b} =
\left| \begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array} \right|
\]
```

### Theorem environments

### Theorem environments

### Theorem (Bézout's Identity)

Let  $m, n \in \mathbb{Z}$ . There exist  $r, s \in \mathbb{Z}$  so that

$$\gcd(m,n) = rm + sn.$$

#### Theorem environments

### Theorem (Bézout's Identity)

Let  $m, n \in \mathbb{Z}$ . There exist  $r, s \in \mathbb{Z}$  so that

$$gcd(m, n) = rm + sn.$$

```
\begin{thm}[B\'ezout's Identity]
Let $m, n \in \mathbb{Z}$. There exist $r,s \in \mathbb{Z}$ so that
\[
\gcd(m,n) = rm+sn .
\]
\end{thm}
```

Code the following.

### Theorem (Triangle Inequality)

For any  $a,b\in\mathbb{C}$ , we have  $|a+b|\leq |a|+|b|$ .

Code the following.

### Theorem (Triangle Inequality)

For any  $a, b \in \mathbb{C}$ , we have  $|a + b| \leq |a| + |b|$ .

```
\begin{thm}[Triangle Inequality]
For any $a,b \in \mathbb{C}$, we have $|a+b| \le |a|
+ |b|$.
\end{thm}
```



The aligned environment is one way to align multiple display mode equations.

The aligned environment is one way to align multiple display mode equations.

$$\frac{x^3 - 1}{x - 1} = \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$
$$= x^2 + x + 1$$

The aligned environment is one way to align multiple display mode equations.

$$\frac{x^3 - 1}{x - 1} = \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$
$$= x^2 + x + 1$$

Suppose we'd like to number and later refer to a displayed equation.

Suppose we'd like to number and later refer to a displayed equation.

$$g(n) = \sum_{d|n} f(d) \tag{1}$$

Here's a reference to equation (1).

Suppose we'd like to number and later refer to a displayed equation.

$$g(n) = \sum_{d|n} f(d) \tag{1}$$

Here's a reference to equation (1).

Now we need the equation environment in place of  $\[\ldots\]$ .

Suppose we'd like to number and later refer to a displayed equation.

$$g(n) = \sum_{d|n} f(d) \tag{1}$$

Here's a reference to equation (1).

Now we need the equation environment in place of  $\[\ldots\]$ .

```
\begin{equation}\label{divisorsum}
g(n) = \sum_{d|n} f(d)
\end{equation}
Here's a reference to equation \eqref{divisorsum}.
```



LATEX automatically keeps track of and increments equation labels.

LATEX automatically keeps track of and increments equation labels.

If g is defined by (1), then

$$f(n) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right). \tag{2}$$

Equation (2) is called the Möbius inversion formula.

LATEX automatically keeps track of and increments equation labels.

If g is defined by (1), then

$$f(n) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right). \tag{2}$$

Equation (2) is called the Möbius inversion formula.

```
If $g$ is defined by \eqref{divisorsum}, then
\begin{equation}\label{inversion}
f(n) = \sum_{d|n} \mu(d) g\left( \frac{n}{d} \right).
\end{equation}
Equation \eqref{inversion} is called the
\em{M\"{o}bius inversion formula.}
```

#### Tables - the tabular environment

Consider the truth table for  $P \rightarrow Q$ :

#### Tables - the tabular environment

Consider the truth table for  $P \rightarrow Q$ :

| P              | Q | $P \to Q$ |
|----------------|---|-----------|
| $\overline{T}$ | T | T         |
| T              | F | F         |
| F              | T | T         |
| F              | F | T         |

#### Tables - the tabular environment

Consider the truth table for  $P \rightarrow Q$ :

$$\begin{array}{c|cc} P & Q & P \rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

```
\begin{tabular}{c c | c}
$P$ & $Q$ & $P \to Q$ \\ \hline
$T$ & $T$ & $T$ \\
$T$ & $F$ & $F$ \\
$F$ & $T$ & $T$ \\
$F$ & $T$ & $T$ \\
$end{tabular}
```

The argument {c c | c} specifies three (horizontally)
 centered columns,

• &'s separate entries in a row;

• &'s separate entries in a row; \\ ends a row.

• &'s separate entries in a row; \\ ends a row.

• \hline draws a horizontal line below a row.

• &'s separate entries in a row; \\ ends a row.

\hline draws a horizontal line below a row.

Entries in math mode must all be enclosed in \$...\$.

We've only scratched the surface of LATEX's capabilities. If you need additional help:

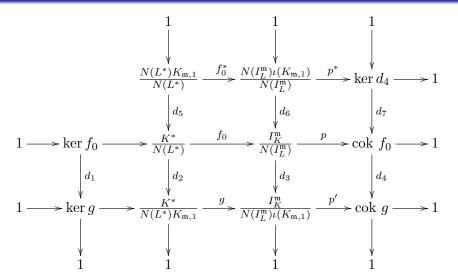
We've only scratched the surface of LATEX's capabilities. If you need additional help:

• Online: try googling "latex (command name)."

We've only scratched the surface of LATEX's capabilities. If you need additional help:

• Online: try googling "latex (command name)."

• In person: ask your peers or any math professor!


We've only scratched the surface of LATEX's capabilities. If you need additional help:

Online: try googling "latex (command name)."

• In person: ask your peers or any math professor!

Anything you're trying to do with LATEX someone else has probably already done. Don't reinvent the wheel!

# Happy TeXing!

