Bézout's Lemma

Ryan C. Daileda

Trinity University
Intro to Abstract Mathematics

Bézout's Lemma

As an application of the Well-Ordering Principle and the Division Algorithm we will prove the following important number-theoretic result.

Theorem 1 (Bézout's Lemma)

Let $a, b \in \mathbb{N}^{+}$. There exist $x, y \in \mathbb{Z}$ so that

$$
\operatorname{gcd}(a, b)=x a+y b
$$

Example. We have $\operatorname{gcd}(212,64)=4$ and

$$
4=\underbrace{-3}_{x} \cdot 212+\underbrace{10}_{y} \cdot 64 .
$$

Remarks

(1) Bézout's Lemma is an existence statement. We will give an nonconstructive proof: it will ensure that x and y exist, but will not tell us how to find them.
(2) A constructive proof of Bézout's Lemma can be derived from the Euclidean algorithm.
(3) Bézout's Lemma is the key ingredient in the proof of Euclid's Lemma, which states that if $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
(9) Euclid's Lemma, in turn, is essential to the proof of the Fundamental Theorem of Arithmetic.

Proof of Bézout's Lemma

We know $\operatorname{gcd}(a, b)$ divides every \mathbb{Z}-linear combination $x a+y b$.

So $\operatorname{gcd}(a, b)$ must be \leq every (pos.) \mathbb{Z}-linear combination $x a+y b$.

So if we expect $\operatorname{gcd}(a, b)$ to equal one such $x a+y b$, it must be the least possible. This motivates our proof.

Proof. Let $S=\{x a+y b \mid x, y \in \mathbb{Z}$ and $x a+y b>0\}$.

Then $S \subset \mathbb{N}$ (by construction) and $S \neq \varnothing(a \in S$, for instance).

By WOP S has a least element $m \in S$.

Outline of the Argument

Let $d=\operatorname{gcd}(a, b)$. We will show that:

1. $d \mid m ;$
2. m is a common divisor of a and b.

Item 1 implies that $d \leq m$.
Because d is the greatest common divisor of a and b, item 2 implies $m \leq d$.

Together these tell us that $d=m$.
Since $m=x a+y b$ for some $x, y \in \mathbb{Z}$ (remember that $m \in S$), this will complete the proof.

The Details

\underline{d} divides m :
Since $d \mid a$ and $d \mid b$, it follows from HW that $d \mid x a+y b$ for any $x, y \in \mathbb{Z}$.

This means d divides every element of S. So $d \mid m$.
m divides a :
Use the div. alg. to write $a=q m+r$ with $0 \leq r<m$.
Assume, for the sake of contradiction, that $r \neq 0($ so $r>0)$.

Write $m=x a+y b, x, y \in \mathbb{Z}$.

Then

$$
r=a-q m=a-q(x a+y b)=\underbrace{(1-q x)}_{\in \mathbb{Z}} a+\underbrace{(-q y)}_{\in \mathbb{Z}} b \in S,
$$

since $r>0$.

So m is the least element of $S, r \in S$ and $r<m$.

This is a contradiction. Thus $r=0$ and $m \mid a$.
\underline{m} divides b : Similar to the previous case.

As we have seen, this completes the proof of Bézout's Lemma. \square

