## Bézout's Lemma

Ryan C. Daileda



Trinity University

Intro to Abstract Mathematics

As an application of the Well-Ordering Principle and the Division Algorithm we will prove the following important number-theoretic result.

## Theorem 1 (Bézout's Lemma)

Let  $a, b \in \mathbb{N}^+$ . There exist  $x, y \in \mathbb{Z}$  so that

gcd(a, b) = xa + yb.

**Example.** We have gcd(212, 64) = 4 and

$$4 = \underbrace{-3}_{x} \cdot 212 + \underbrace{10}_{y} \cdot 64.$$

- Bézout's Lemma is an existence statement. We will give an nonconstructive proof. it will ensure that x and y exist, but will not tell us how to find them.
- A constructive proof of Bézout's Lemma can be derived from the Euclidean algorithm.
- Bézout's Lemma is the key ingredient in the proof of Euclid's Lemma, which states that if a|bc and gcd(a, b) = 1, then a|c.
- Euclid's Lemma, in turn, is essential to the proof of the Fundamental Theorem of Arithmetic.

We know gcd(a, b) divides every  $\mathbb{Z}$ -linear combination xa + yb.

So gcd(*a*, *b*) must be  $\leq$  every (pos.)  $\mathbb{Z}$ -linear combination xa + yb.

So if we expect gcd(a, b) to equal one such xa + yb, it must be the least possible. This motivates our proof.

*Proof.* Let 
$$S = \{xa + yb \mid x, y \in \mathbb{Z} \text{ and } xa + yb > 0\}.$$

Then  $S \subset \mathbb{N}$  (by construction) and  $S \neq \emptyset$  ( $a \in S$ , for instance).

By WOP S has a least element  $m \in S$ .

Let d = gcd(a, b). We will show that:

**1.** *d*|*m*;

**2.** *m* is a common divisor of *a* and *b*.

Item 1 implies that  $d \leq m$ .

Because *d* is the *greatest* common divisor of *a* and *b*, item **2** implies  $m \leq d$ .

Together these tell us that d = m.

Since m = xa + yb for some  $x, y \in \mathbb{Z}$  (remember that  $m \in S$ ), this will complete the proof.

## d divides m:

Since d|a and d|b, it follows from HW that d|xa + yb for any  $x, y \in \mathbb{Z}$ .

This means d divides every element of S. So d|m.

## *m* divides *a*:

Use the div. alg. to write a = qm + r with  $0 \le r < m$ .

Assume, for the sake of contradiction, that  $r \neq 0$  (so r > 0).

Write m = xa + yb,  $x, y \in \mathbb{Z}$ .

Then

$$r = a - qm = a - q(xa + yb) = \underbrace{(1 - qx)}_{\in \mathbb{Z}} a + \underbrace{(-qy)}_{\in \mathbb{Z}} b \in S,$$

since r > 0.

So *m* is the least element of *S*,  $r \in S$  and r < m.

This is a contradiction. Thus r = 0 and m|a.

<u>*m* divides *b*</u>: Similar to the previous case.

As we have seen, this completes the proof of Bézout's Lemma.