Countable Sets

Ryan C. Daileda

Intro to Abstract Mathematics

Countability

Definition

Let X be a set. We say that X is *countable* if it is possible to list the elements of X:

$$X = \{x_1, x_2, x_3, x_4, \ldots\}.$$

If the list eventually ends we say X is *finite*. If the list goes on indefinitely we say X is *countably infinite*.

A finite (countable) set has the form

$$X = \{x_1, x_2, x_3, \dots, x_n\},\$$

where $n \in \mathbb{N}^+$ is the number of elements of X. In this case we write

$$|X| = n$$
.

The empty set is vacuously countable:

$$\emptyset = \{\},$$

and we write $|\varnothing| = 0$.

If *X* is countably infinite we write

$$|X| = \aleph_0$$

(pronounced aleph naught).

Example 1

The sets $\{\pm 1\}$, $\{\pi, \sqrt{3}, e, \sqrt{5}\}$, $\{1, 2, 3, 4, \dots, 1000\}$ are all finite.

Example 2

The sets $\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$, $E = \{2, 4, 6, 8, 10, \ldots\}$ and $P = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$ are countably infinite.

Countability can be rephrased in terms of certain bijections. For $n \in \mathbb{N}^+$ let

$$I(n) = \{1, 2, 3, 4, \ldots, n\}.$$

Theorem 1

Let X be a nonempty set.

- **1.** X is finite iff there is an $n \in \mathbb{N}^+$ and a bijection $f : I(n) \to X$.
- **2.** X is countably infinite iff there is a bijection $g: \mathbb{N}^+ \to X$.

Proof. If X is finite with |X| = n, then

$$X = \{x_1, x_2, x_3, \dots, x_n\}.$$

The rule $f(k) = x_k$ is a bijection $f: I(n) \to X$.

If X is countably infinite, then

$$X = \{x_1, x_2, x_3, \ldots\},\$$

and the rule $g(k) = x_k$ is a bijection $g : \mathbb{N}^+ \to X$.

Example 3

The set $\mathcal{P}(\mathbb{N}^+)$ is *not* countable.

Proof. $\mathcal{P}(\mathbb{N}^+)$ is not finite since $\{n\} \in \mathcal{P}(\mathbb{N}^+)$ for all $n \in \mathbb{N}^+$.

And according to Cantor's theorem, there is no bijection $f: \mathbb{N}^+ \to \mathcal{P}(\mathbb{N}^+)$, either.

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

$$x_1$$
 (0,1) (0,2) (0,3) (0,4) ...
(1,0) (1,1) (1,2) (1,3) (1,4) ...
(2,0) (2,1) (2,2) (2,3) (2,4) ...
(3,0) (3,1) (3,2) (3,3) (3,4) ...
(4,0) (4,1) (4,2) (4,3) (4,4) ...
 \vdots \vdots \vdots \vdots \vdots \vdots ...

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

$$x_1$$
 x_2 $(0,2)$ $(0,3)$ $(0,4)$ \cdots $(1,0)$ $(1,1)$ $(1,2)$ $(1,3)$ $(1,4)$ \cdots $(2,0)$ $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$ \cdots $(3,0)$ $(3,1)$ $(3,2)$ $(3,3)$ $(3,4)$ \cdots $(4,0)$ $(4,1)$ $(4,2)$ $(4,3)$ $(4,4)$ \cdots \vdots \vdots \vdots \vdots \vdots \vdots

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

$$x_1$$
 x_2 $(0,2)$ $(0,3)$ $(0,4)$ \cdots
 x_3 $(1,1)$ $(1,2)$ $(1,3)$ $(1,4)$ \cdots
 $(2,0)$ $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$ \cdots
 $(3,0)$ $(3,1)$ $(3,2)$ $(3,3)$ $(3,4)$ \cdots
 $(4,0)$ $(4,1)$ $(4,2)$ $(4,3)$ $(4,4)$ \cdots
 \vdots \vdots \vdots \vdots \vdots

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

$$x_1$$
 x_2 x_4 $(0,3)$ $(0,4)$ \cdots
 x_3 $(1,1)$ $(1,2)$ $(1,3)$ $(1,4)$ \cdots
 $(2,0)$ $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$ \cdots
 $(3,0)$ $(3,1)$ $(3,2)$ $(3,3)$ $(3,4)$ \cdots
 $(4,0)$ $(4,1)$ $(4,2)$ $(4,3)$ $(4,4)$ \cdots
 \vdots \vdots \vdots \vdots \vdots \vdots \cdots

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Example 4

The set \mathbb{Z} is countable since

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}.$$

Example 5

Uncountability of ${\mathbb R}$

A somewhat amazing fact is that there are more real numbers than there are natural numbers, in the following precise technical sense.

Theorem 2

The set \mathbb{R} is uncountable.

Proof. It suffices to prove the interval (0,1) is uncountable.

We use Cantor's diagonal argument.

Every $x \in (0,1)$ has a decimal representation

$$x = 0.d_1d_2d_3d_4..., \text{ with } d_k \in \{0, 1, 2, ..., 9\},$$

which is unique if we do not allow terminating strings of 9s.

We assume (0,1) is countable and derive a contradiction.

So write $(0,1) = \{x_1, x_2, x_3, ...\}$ and list the decimal representations:

$$x_1 = 0.d_{11}d_{12}d_{13}d_{14}...$$

$$x_2 = 0.d_{21}d_{22}d_{23}d_{24}...$$

$$x_3 = 0.d_{31}d_{32}d_{33}d_{34}...$$

$$x_4 = 0.d_{41}d_{42}d_{43}d_{44}...$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

For $d \in \{0, 1, 2, \dots, 9\}$ define

$$d' = \begin{cases} 1 & \text{if } d = 2, \\ 2 & \text{otherwise.} \end{cases}$$

Notice that $d' \in \{0, 1, 2, \dots, 9\}$ and $d' \neq d$.

Now define x by using d' to alter the diagonal entries of the table of digits:

$$x = 0.d'_{11}d'_{22}d'_{33}d'_{44}... \in (0,1).$$

Notice that $x \neq x_k$ for any k, since $d'_{kk} \neq d_{kk}$.

So
$$x \notin \{x_1, x_2, x_3, \ldots\} = (0, 1)$$
, a contradiction.

