The Division Algorithm

Ryan C. Daileda

Trinity University

Intro to Abstract Mathematics

Long Division

Consider the following garden variety long division problem.

Example 1

Find the quotient and remainder when 4982 is divided by 11.

		4	5	2
11	4	9	8	2
	4	4		
		5	8	
		5	5	
			3	2
			2	2
			1	0

So the quotient is $\boxed{452}$ and the remainder is $\boxed{10}$

Daileda Division

Questions

Q1. What do the quotient (452) and remainder (10) mean?

Ans. If we try to divide 4982 (the *dividend*) into groups of size 11 (the *divisor*), there will be 452 groups with 10 units left over.

Q2. What specific relationship between 11, 4982, 452 and 10 is guaranteed by the long division process?

Ans. $4982 = 452 \times 11 + 10$ or, more generally,

dividend = $(quotient \times divisor) + remainder.$

Q3. What can you say about the size of the remainder?

Ans. $0 \leq 10 < 11.$ The remainder is nonnegative and smaller than the divisor.

The Division Algorithm

The existence of quotients and remainders in general is guaranteed by the next fundamental result.

Theorem 1 (The Division Algorithm)

Let $m \in \mathbb{N}^+$. For each $n \in \mathbb{N}$ there exist unique $q, r \in \mathbb{N}$ so that

$$n = qm + r$$
 and $0 \le r < m$.

Remarks.

- Here m is the divisor, n is the dividend, q is the quotient and r is the remainder (when n is divided by m).
- 2 Uniqueness means that for each *n* there is only one pair (q, r) satisfying the conclusions of the theorem.

Example

The following is a nice application of the uniqueness of quotients and remainders.

Example 2

Let $m \in \mathbb{N}^+$ and $n \in \mathbb{N}$. Prove that m|n if and only if r = 0 in the division algorithm.

Proof. (\Leftarrow) Use the div. alg. to write n = qm + r with $q, r \in \mathbb{N}$. If r = 0, then n = qm and hence m|n. (\Rightarrow) Suppose m|n. Then $n = am = \underbrace{am + 0}_{qm+r}$ for some $a \in \mathbb{N}$.

Since 0 < m, the uniqueness of quotients and remainders implies that q = a and r = 0 in the div. alg.

More Remarks

The condition $0 \le r < m$ is equivalent to $r \in \{0, 1, 2, \dots, m-1\}$.

The remainder r tells us *precisely* what "goes wrong" when m fails to divide n.

Modular arithmetic is concerned with how remainders behave under arithmetic operations.

The div. alg. can be used as a substitute for exact divisibility in applications (specifically *Bézout's lemma*).

The div. alg. is easily implemented on a hand calculator: q = floor(n/m) and r = n - qm.

Recall

We now turn to proving the division algorithm. We first recall two recently discussed results that will be necessary for our proof.

Axiom (The Well-Ordering Principle)

Every nonempty subset of \mathbb{N} has a least element.

Lemma 1

Let $m \in \mathbb{N}^+$ and $n \in \mathbb{N}$. There is an $a \in \mathbb{N}^+$ so that am > n.

Remarks.

- Remember, the Well-Ordering Principle can only be asserted, it *cannot* be proven.
- 2 We proved Lemma 1 in class shortly before the break.

Proof of the Division Algorithm: Existence

Let $n \in \mathbb{N}$ and define

 $S = \{t \in \mathbb{N} \mid tm > n\}.$

By Lemma 1, $S \subset \mathbb{N}$ is nonempty.

S therefore has a least element $t_0 \in S$.

Let $q = t_0 - 1$ and set r = n - qm. Then n = qm + r by construction.

By our choice of q we have $qm \le n < (q+1)m$, so that

$$0 \leq \underbrace{n-qm}_{r} < m.$$

This establishes the *existence* of q and r.

Proof of the Division Algorithm: Uniqueness

Suppose we have a second pair $q', r' \in \mathbb{N}$ with n = q'm + r' and $0 \le r' < m$.

Then
$$r - r' = m(q' - q)$$
. Thus $m|r - r'$.

But -m < r - r' < m as $0 \le r, r' < m$. This implies r - r' = 0.

We then have 0 = m(q' - q) with $m \neq 0$. Hence q' - q = 0.

We conclude that r = r' and q = q'. This proves the *uniqueness* of q and r.