The Division Algorithm

Ryan C. Daileda

Trinity University
Intro to Abstract Mathematics

Long Division

Consider the following garden variety long division problem.

Example 1

Find the quotient and remainder when 4982 is divided by 11.

11

	4	5	2
4	9	8	2
4	4		
	5	8	
	5	5	
	3	2	
		2	2
		1	0

So the quotient is 452 and the remainder is 10 .

Questions

Q1. What do the quotient (452) and remainder (10) mean?
Ans. If we try to divide 4982 (the dividend) into groups of size 11 (the divisor), there will be 452 groups with 10 units left over.

Q2. What specific relationship between 11, 4982, 452 and 10 is guaranteed by the long division process?

Ans. $4982=452 \times 11+10$ or, more generally,

$$
\text { dividend }=(\text { quotient } \times \text { divisor })+\text { remainder } .
$$

Q3. What can you say about the size of the remainder?
Ans. $0 \leq 10<11$. The remainder is nonnegative and smaller than the divisor.

The Division Algorithm

The existence of quotients and remainders in general is guaranteed by the next fundamental result.

Theorem 1 (The Division Algorithm)

Let $m \in \mathbb{N}^{+}$. For each $n \in \mathbb{N}$ there exist unique $q, r \in \mathbb{N}$ so that

$$
n=q m+r \quad \text { and } \quad 0 \leq r<m .
$$

Remarks.

(1) Here m is the divisor, n is the dividend, q is the quotient and r is the remainder (when n is divided by m).
(2) Uniqueness means that for each n there is only one pair (q, r) satisfying the conclusions of the theorem.

Example

The following is a nice application of the uniqueness of quotients and remainders.

Example 2

Let $m \in \mathbb{N}^{+}$and $n \in \mathbb{N}$. Prove that $m \mid n$ if and only if $r=0$ in the division algorithm.

Proof. (\Leftarrow) Use the div. alg. to write $n=q m+r$ with $q, r \in \mathbb{N}$.
If $r=0$, then $n=q m$ and hence $m \mid n$.
(\Rightarrow) Suppose $m \mid n$. Then $n=a m=\underbrace{a m+0}_{q m+r}$ for some $a \in \mathbb{N}$.
Since $0<m$, the uniqueness of quotients and remainders implies that $q=a$ and $r=0$ in the div. alg.

More Remarks

The condition $0 \leq r<m$ is equivalent to $r \in\{0,1,2, \ldots, m-1\}$.

The remainder r tells us precisely what "goes wrong" when m fails to divide n.

Modular arithmetic is concerned with how remainders behave under arithmetic operations.

The div. alg. can be used as a substitute for exact divisibility in applications (specifically Bézout's lemma).

The div. alg. is easily implemented on a hand calculator: $q=$ floor (n / m) and $r=n-q m$.

Recall

We now turn to proving the division algorithm. We first recall two recently discussed results that will be necessary for our proof.

Axiom (The Well-Ordering Principle)

Every nonempty subset of \mathbb{N} has a least element.

Lemma 1

Let $m \in \mathbb{N}^{+}$and $n \in \mathbb{N}$. There is an $a \in \mathbb{N}^{+}$so that am>n.
Remarks.
(1) Remember, the Well-Ordering Principle can only be asserted, it cannot be proven.
(2) We proved Lemma 1 in class shortly before the break.

Proof of the Division Algorithm: Existence

Let $n \in \mathbb{N}$ and define

$$
S=\{t \in \mathbb{N} \mid t m>n\} .
$$

By Lemma $1, S \subset \mathbb{N}$ is nonempty.
S therefore has a least element $t_{0} \in S$.
Let $q=t_{0}-1$ and set $r=n-q m$. Then $n=q m+r$ by construction.

By our choice of q we have $q m \leq n<(q+1) m$, so that

$$
0 \leq \underbrace{n-q m}_{r}<m .
$$

This establishes the existence of q and r.

Proof of the Division Algorithm: Uniqueness

Suppose we have a second pair $q^{\prime}, r^{\prime} \in \mathbb{N}$ with $n=q^{\prime} m+r^{\prime}$ and $0 \leq r^{\prime}<m$.

Then $r-r^{\prime}=m\left(q^{\prime}-q\right)$. Thus $m \mid r-r^{\prime}$.

But $-m<r-r^{\prime}<m$ as $0 \leq r, r^{\prime}<m$. This implies $r-r^{\prime}=0$.

We then have $0=m\left(q^{\prime}-q\right)$ with $m \neq 0$. Hence $q^{\prime}-q=0$.

We conclude that $r=r^{\prime}$ and $q=q^{\prime}$. This proves the uniqueness of q and r.

