Equivalence Classes

Ryan C. Daileda

Trinity University

Intro to Abstract Mathematics

Equivalence Classes

Recall: An equivalence relation on a set A is a relation $R \subset A^2$ that is reflexive, symmetric and transitive.

Definition

Let R be an equivalence relation on A and let $a \in A$. The equivalence class of a is the set

$$[a] = \{b \in A \mid bRa\},\$$

the set of all elements of A that are R-related to a.

Remark. By reflexivity of R, for all $a \in A$ one has aRa, which implies $a \in [a]$. This has two consequences:

- No equivalence class is empty.
- ② Every $a \in A$ belongs to an equivalence class.

Example 1

Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}$. Compute the equivalence class of a under congruence modulo m.

Solution. Recall that $b \equiv a \pmod{m}$ if and only if m|b-a.

Thus:

$$b \in [a] \iff b \equiv a \pmod{m}$$

 $\iff m|b-a$
 $\iff b-a=mk$, some $k \in \mathbb{Z}$
 $\iff b=a+mk$, some $k \in \mathbb{Z}$
 $\iff b \in \{a+mk \mid k \in \mathbb{Z}\} := a+m\mathbb{Z}$.

We conclude that the equivalence class of a is the arithmetic progression

$$[a] = a + m\mathbb{Z} = \{\ldots, a-2m, a-m, a, a+m, a+2m, \ldots\}$$

For instance, if m = 3 then:

$$[5] = 5 + 3\mathbb{Z} = \{\dots, -4, -1, 2, 5, 8, 11, 14, \dots\} = [2] = [8] = \dots$$
$$[-2] = -2 + 3\mathbb{Z} = \{\dots, -5, -2, 1, 4, 7, 10, 13, \dots\} = [1] = [7] = \dots$$
$$[0] = 0 + 3\mathbb{Z} = \{\dots, -6, -3, 0, 3, 6, 9, 12, \dots\} = [3] = [-3] = \dots$$

Preliminary Observations

Notice. In our final example:

- Distinct classes do not overlap, i.e. they are disjoint.
- Multiple elements can share the same equivalence class.
- **3** Every integer belongs to some class (the classes *cover* \mathbb{Z}), as expected.

We will generalize all three of these statements to arbitrary equivalence relations.

We will also explain why there are exactly m=3 equivalence classes, by generalizing to C_m .

Quotient Sets

Definition

Let R be an equivalence relation on a set A. The set

$$A/R = \{[a] \mid a \in A\} \subset \mathcal{P}(A)$$

is called the quotient of A by R.

Remark. A/B is commonly read as A modulo B, or just A mod B.

Example 2

Our example above shows that under congruence modulo 3 (C_3):

$$\mathbb{Z}/C_3 = \{[5], [-2], [0]\}.$$

Structure of A/R

It is easier to understand specific examples if we first analyze the general structure of A/R.

Theorem 1

Let A be a set with an equivalence relation R. Then:

- **1.** For all $a, b \in A$, [a] = [b] if and only if aRb.
- **2.** For all $a, b \in A$, [a] = [b] or $[a] \cap [b] = \emptyset$.
- **3.** A is the (disjoint) union of the set of equivalence classes:

$$A = \bigsqcup_{C \in A/R} C.$$

Remark. Parts 2 and 3 say that A/R is a partition of A.

Proof

1. (\Rightarrow) If [a] = [b], then $b \in [b] = [a]$, so that bRa.

Since R is symmetric, this implies aRb, as claimed.

 (\Leftarrow) Suppose aRb.

Let $c \in [a]$. Then cRa and aRb, so that transitivity implies cRb.

Thus, $c \in [b]$. This proves $[a] \subset [b]$, for any pair $a, b \in A$.

By reversing the roles of a and b we therefore obtain $[b] \subset [a]$, and hence [a] = [b].

2. Let $a, b \in A$.

It is easy to see that $P \vee Q$ is logically equivalent to $\neg P \rightarrow Q$.

So we assume $[a] \cap [b] \neq \emptyset$ and show that [a] = [b].

Let $c \in [a] \cap [b]$.

Then cRa and cRb, so that [c] = [a] and [c] = [b] by part 1.

Thus [a] = [c] = [b], as needed.

3. We have already proven that every $a \in A$ belongs to $[a] \in A/R$. The result follows.

Example 3

Let $m \in \mathbb{N}$. Determine the quotient set \mathbb{Z}/C_m , the equivalence classes in \mathbb{Z} under congruence modulo m.

Solution. Let $a \in \mathbb{Z}$ and write a = qm + r with $0 \le r < m$.

Then qm = a - r so that m|a - r and $a \equiv r \pmod{m}$.

By Theorem 1, [a] = [r].

Thus
$$Z/C_m = \{[r] \mid 0 \le r < m\} = \{[0], [1], [2], \dots, [m-1]\}$$
.

Uniqueness

It is worth noting that the uniqueness of remainders in the division algorithm implies that if $r, s \in \{0, 1, 2, \dots, m-1\}$ and [r] = [s], then r = s.

Thus, in the expression $\mathbb{Z}/C_m=\{[0],[1],[2],\ldots,[m-1]\}$ there are *no repeats*. Consequently:

Theorem 2

There are exactly m equivalence classes in \mathbb{Z} under congruence modulo m, and they are given by the classes of the remainders upon division by m: $\mathbb{Z}/C_m = \{[0], [1], [2], \dots, [m-1]\}.$

Remark. In practice one usually writes \mathbb{Z}_m or $\mathbb{Z}/m\mathbb{Z}$ instead of \mathbb{Z}/C_m .

Example 4

Determine \mathbb{R}/C_Z , where $C_Z = \{(x, y) \in \mathbb{R}^2 \mid x - y \in \mathbb{Z}\}.$

Remark. Instead of xC_Zy one writes $x \equiv y \pmod{\mathbb{Z}}$.

Solution (Sketch). For $x \in \mathbb{R}$ Let

$$\lfloor x \rfloor = \max\{n \mid n \in \mathbb{Z} \text{ and } n \leq x\},\$$

the *floor* of x.

Since
$$\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$$
, we have $0 \leq \underbrace{x - \lfloor x \rfloor}_{(x)} < 1$. We call (x)

the fractional part of x.

So
$$(x) \in [0,1)$$
 and

$$x - (x) = x - (x - \lfloor x \rfloor) = \lfloor x \rfloor \in \mathbb{Z} \implies x \equiv (x) \pmod{\mathbb{Z}}$$

$$\Rightarrow [x] = [(x)].$$

It follows that $\mathbb{R}/C_Z = \{[y] \mid y \in [0,1)\}.$

And one can show that if $y, z \in [0, 1)$ and [y] = [z], then y = z.

So each equivalence class is *uniquely* represented by a $y \in [0,1)$.

These are the *remainders mod* \mathbb{Z} .

We can rephrase the results of preceding example as follows.

Theorem 3

For every $x \in \mathbb{R}$, there exist unique $n \in \mathbb{Z}$ and $\epsilon \in [0,1)$ so that $x = n + \epsilon$. In fact, $n = \lfloor x \rfloor$ and $\epsilon = (x)$.

For example,

$$\pi = 3.141592... = 3 + 0.141592... \Rightarrow [\pi] = [0.141592...],$$

 $\sqrt{5} = 2.236067... = 2 + 0.236067... \Rightarrow [\sqrt{5}] = [0..236067...],$

whereas

$$-1.75 = -2 + 0.25 \Rightarrow [-1.75] = [0.25].$$

Recall the equivalence relation Q on $\mathbb{Z} \times \mathbb{N}^+$ given by

$$(a,b)Q(c,d) \iff ad-bc=0.$$

The equivalence classes of Q are called *fractions*. We write

$$\frac{a}{b}:=[(a,b)].$$

The rational numbers are the set of all fractions:

$$\mathbb{Q} := (\mathbb{Z} \times \mathbb{N}^+)/Q.$$

This is the standard way to construct $\mathbb Q$ from $\mathbb Z$.