Equivalence Relations

Ryan C. Daileda

Trinity University

Intro to Abstract Mathematics

Three Important Types of Relations

Definition

Let A be a set and let R be a relation on A. We say that R is:

- **1.** *Reflexive* if aRa for all $a \in A$;
- **2.** Symmetric if aRb implies bRa, for all $a, b \in A$;
- **3.** Transitive if aRb and bRc imply aRc, for all $a, b, c \in A$.

Remark. It is not difficult to show that:

Theorem 1

Let R be a relation on a set A. Then:

- **1.** *R* is reflexive iff $i_A \subset R$;
- **2.** *R* is symmetric iff $R = R^{-1}$;
- **3.** *R* is transitive iff $R \circ R \subset R$.

(Recall that $i_A = \{(a, a) | a \in A\}$ is the *identity relation*.)

Examples

Example 1

$L_1 = \{(m,n) \in \mathbb{Z}^2 \,|\, m < n\}$ on \mathbb{Z}

- **1.** L_1 is *not* reflexive since $(0,0) \notin L_1$ (for instance).
- **2.** It is *not* symmetric since $(1,2) \in L_1$, but $(2,1) \notin L_1$.
- **3.** But it *is transitive*, since m < n and $n < \ell$ together imply $m < \ell$.

Example 2

$$D=\{(x,y)\in \mathbb{R}^2\,|\,|x-y|<1\}$$
 on $\mathbb R$

- **1.** *D* is reflexive since |x x| < 1 for all $x \in \mathbb{R}$.
- **2.** It *is symmetric* since |x y| = |y x| for all $x, y \in \mathbb{R}$.
- But it is not transitive, since (0, 3/4), (3/4, 3/2) ∈ D but (0, 3/2) ∉ D.

Example 3

Let X be a nonempty set and $V = \{(A, B) \in \mathcal{P}(X)^2 | A \cap B = \emptyset\}$, a relation on $\mathcal{P}(X)$.

- **1.** *V* not reflexive since $X \cap X \neq \emptyset$.
- **2.** It *is symmetric* since $A \cap B = B \cap A$ for all $A, B \in \mathcal{P}(X)$.
- **3.** But it is *not* transitive, since $(X, \emptyset), (\emptyset, X) \in V$ but $(X, X) \notin V$.

Example 4

Let $m \in \mathbb{N}$ and $C_m = \{(a, b) \in \mathbb{Z}^2 : m | a - b\}$, a relation on \mathbb{Z} .

- 1. C_m is reflexive since m|a a for all $a \in \mathbb{Z}$.
- 2. It is symmetric since m|k if and only if m|(-k) for any $k \in \mathbb{Z}$.
- 3. And it is transitive since if m|a b and m|b c, then m|(a b) + (b c) = a c, for any $a, b, c \in \mathbb{Z}$.

Definition

A relation R on a set A is called an *equivalence relation* if it is reflexive, symmetric and transitive.

Remarks.

- An equivalence relation generalizes the notion of strict equality/identity between objects.
- It is common to denote equivalence relations using more suggestive notation, such as ≃, ≡, ≈, ~, instead of single letters like R.
- Objects related by an equivalence relation can be thought of as "the same," in a sense to be made more precise later.

Example 5

The relation $C_m = \{(a, b) \in \mathbb{Z}^2 : m | a - b\}$ on \mathbb{Z} is an equivalence relation, for every $m \in \mathbb{N}$.

This follows from the final example above.

 C_m is called *congruence modulo m*.

Instead of $aC_m b$ one writes $a \equiv b \pmod{m}$.

Let $n \in \mathbb{Z}$ and use the division algorithm to write n = qm + r, $0 \le r < m$.

```
Then m|n-r so that n \equiv r \pmod{m}.
```

Because remainders are unique, this proves:

Theorem 2

Let $m \in \mathbb{N}$. For each $n \in \mathbb{Z}$ there is a unique $r \in \{0, 1, 2, \dots, m-1\}$ so that $n \equiv r \pmod{m}$.

Remark. In fact, Theorem 2 is *equivalent* to the division algorithm.

Example 6

Let $C_Z = \{(x, y) \in \mathbb{R}^2 | x - y \in \mathbb{Z}\}$. Then C_Z is an equivalence relation on \mathbb{R} .

The proof is left as an exercise.

Instead of $xC_Z y$, one writes $x \equiv y \pmod{\mathbb{Z}}$.

Example 7

Let $S = \mathbb{Z} imes \mathbb{N}^+$ and define

$$Q = \{((a, b), (c, d)) \in S^2 \,|\, ad - bc = 0\}.$$

Show that Q is an equivalence relation on S.

We must show Q is reflexive, symmetric and transitive.

- 1. Reflexive: Let $(a, b) \in \mathbb{Z} \times \mathbb{N}^+$. Then (a, b)Q(a, b) since ab ba = 0.
- 2. Symmetric: Let $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{N}^+$. Suppose that (a, b)Q(c, d). Then ad - bc = 0. Hence

$$0 = -(ad - bc) = bc - ad = cb - da,$$

so that (c, d)Q(a, b).

3. Transitive Let $(a, b), (c, d), (e, f) \in \mathbb{Z} \times \mathbb{N}^+$.

Suppose (a, b)Q(c, d) and (c, d)Q(e, f). Then ad - bc = 0 and cf - de = 0.

Consequently,

$$0 = f(ad - bc) + b(cf - de) = fad - bde = (af - be)d.$$

Since $d \neq 0$, we have af - be = 0 and thus (a, b)Q(e, f).

Remark. Notice we only used the fact that second coordinates are positive (as opposed to nonnegative) in the final step.