Equivalence Relations

Ryan C. Daileda

Intro to Abstract Mathematics

Three Important Types of Relations

Definition

Let A be a set and let R be a relation on A. We say that R is:

- **1.** Reflexive if aRa for all $a \in A$;
- 2. Symmetric if aRb implies bRa, for all $a, b \in A$;
- **3.** Transitive if aRb and bRc imply aRc, for all a, b, $c \in A$.

Remark. It is not difficult to show that:

Theorem 1

Let R be a relation on a set A . Then:

- 1. R is reflexive iff $i_A \subset R$;
- **2.** *R* is symmetric iff $R = R^{-1}$;
- **3.** R is transitive iff $R \circ R \subset R$.

(Recall that $i_A = \{(a, a) | a \in A\}$ is the *identity relation*.)

Examples

Example 1

$L_1 = \{ (m, n) \in \mathbb{Z}^2 \, | \, m < n \}$ on $\mathbb Z$

- 1. L_1 is not reflexive since $(0,0) \notin L_1$ (for instance).
- 2. It is not symmetric since $(1, 2) \in L_1$, but $(2, 1) \notin L_1$.
- **3.** But it *is transitive*, since $m < n$ and $n < \ell$ together imply $m < \ell$.

Example 2

$$
D = \{(x, y) \in \mathbb{R}^2 \, | \, |x - y| < 1\} \text{ on } \mathbb{R}
$$

- 1. D is reflexive since $|x x| < 1$ for all $x \in \mathbb{R}$.
- 2. It is symmetric since $|x y| = |y x|$ for all $x, y \in \mathbb{R}$.
- **3.** But it is not transitive, since $(0, 3/4)$, $(3/4, 3/2) \in D$ but $(0, 3/2) \notin D$.

Example 3

Let X be a nonempty set and $V = \{ (A,B)\in \mathcal{P}(X)^2\,|\, A\cap B = \varnothing\},$ a relation on $\mathcal{P}(X)$.

- 1. V not reflexive since $X \cap X \neq \emptyset$.
- 2. It is symmetric since $A \cap B = B \cap A$ for all $A, B \in \mathcal{P}(X)$.
- **3.** But it is *not* transitive, since $(X, \varnothing), (\varnothing, X) \in V$ but $(X, X) \notin V$.

Example 4

Let $m\in\mathbb{N}$ and $\mathcal{C}_m=\{(a,b)\in\mathbb{Z}^2\,:\,m|a-b\},$ a relation on $\mathbb{Z}.$

- 1. C_m is reflexive since $m|a a$ for all $a \in \mathbb{Z}$.
- 2. It is symmetric since m|k if and only if m|(-k) for any $k \in \mathbb{Z}$.
- **3.** And it *is transitive* since if $m|a b$ and $m|b c$, then $m|(a - b) + (b - c) = a - c$, for any a, b, $c \in \mathbb{Z}$.

Definition

A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Remarks.

- **1** An equivalence relation generalizes the notion of strict equality/identity between objects.
- 2 It is common to denote equivalence relations using more suggestive notation, such as \cong , \equiv , \approx , \sim , instead of single letters like R.
- ³ Objects related by an equivalence relation can be thought of as "the same," in a sense to be made more precise later.

Examples

Example 5

The relation $\mathcal{C}_m = \{(a,b) \in \mathbb{Z}^2 \,:\, m|a-b\}$ on $\mathbb Z$ is an equivalence relation, for every $m \in \mathbb{N}$.

This follows from the final example above.

 C_m is called *congruence modulo m.*

Instead of $aC_m b$ one writes $a \equiv b$ (mod m).

Let $n \in \mathbb{Z}$ and use the division algorithm to write $n = qm + r$, $0 \le r \le m$.

```
Then m|n-r so that n \equiv r \pmod{m}.
```
Because remainders are unique, this proves:

Theorem 2

Let $m \in \mathbb{N}$. For each $n \in \mathbb{Z}$ there is a unique $r \in \{0, 1, 2, \ldots, m-1\}$ so that $n \equiv r \pmod{m}$.

Remark. In fact, Theorem 2 is equivalent to the division algorithm.

Example 6

Let $C_Z = \{(x, y) \in \mathbb{R}^2 \, | \, x - y \in \mathbb{Z}\}$. Then C_Z is an equivalence relation on R.

The proof is left as an exercise.

Instead of xC_7y , one writes $x \equiv y \pmod{\mathbb{Z}}$.

Example 7

Let $S = \mathbb{Z} \times \mathbb{N}^+$ and define

$$
Q = \{ ((a, b), (c, d)) \in S^2 \mid ad - bc = 0 \}.
$$

Show that Q is an equivalence relation on S .

We must show Q is reflexive, symmetric and transitive.

- 1. Reflexive: Let $(a, b) \in \mathbb{Z} \times \mathbb{N}^+$. Then $(a, b)Q(a, b)$ since $ab - ba = 0$.
- 2. Symmetric: Let $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{N}^+$. Suppose that $(a, b)Q(c, d)$. Then $ad - bc = 0$. Hence

$$
0=-(ad-bc)=bc-ad=cb-da,
$$

so that $(c, d)Q(a, b)$.

3. Transitive Let $(a, b), (c, d), (e, f) \in \mathbb{Z} \times \mathbb{N}^+$.

Suppose $(a, b)Q(c, d)$ and $(c, d)Q(e, f)$. Then $ad - bc = 0$ and $cf - de = 0$.

Consequently,

$$
0 = f(ad - bc) + b(cf - de) = fad - bde = (af - be)d.
$$

Since $d \neq 0$, we have $af - be = 0$ and thus $(a, b)Q(e, f)$. \Box

Remark. Notice we only used the fact that second coordinates are positive (as opposed to nonnegative) in the final step.