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Three Important Types of Relations

Definition
Let A be a set and let R be a relation on A. We say that R is:
1. Reflexive if aRa for all a € A;

2. Symmetric it aRb implies bRa, for all a, b € A;
3. Transitive if aRb and bRc imply aRc, for all a, b, c € A.

Remark. It is not difficult to show that:

Let R be a relation on a set A. Then:
1. R is reflexive iff i C R;
2. R is symmetric iff R = R1:
3. R is transitive iff Ro R C R.

(Recall that iq = {(a, a) | a € A} is the identity relation.)



SETES

Ly ={(m,n) €Z?|m < n}onZ

1. Ly is not reflexive since (0,0) & Ly (for instance).

It is not symmetric since (1,2) € Ly, but (2,1) & L;.

3. But it is transitive, since m < n and n < { together imply
m < L.

i

D:{(x,y)eRsz—y|<1}onR

1. D is reflexive since |x — x| < 1 for all x € R.

2. It is symmetric since |x — y| = |y — x| for all x,y € R.

3. But it is not transitive, since (0,3/4),(3/4,3/2) € D but
(0,3/2) ¢ D.



Let X be a nonempty set and V = {(A,B) € P(X)?| AN B = &},
a relation on P(X).

1. V not reflexive since X N X # &.
2. It is symmetric since AN B = BN A for all A,B € P(X).

3. But it is not transitive, since (X, @), (&, X) € V but
(X,X) & V.

Example 4
Let m € Nand Cp, = {(a,b) € Z? : m|a— b}, a relation on Z.

1. G, is reflexive since m|a — a for all a € Z.

2. It is symmetric since m|k if and only if m|(—k) for any k € Z.

3. And it is transitive since if m|la — b and m|b — c, then
m|(a—b)+ (b—c)=a—c, forany a,b,c € Z.
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Equivalence Relations

Definition
A relation R on a set A is called an equivalence relation if it is
reflexive, symmetric and transitive.

Remarks.

© An equivalence relation generalizes the notion of strict
equality/identity between objects.

@ It is common to denote equivalence relations using more
suggestive notation, such as =2, =, =, ~, instead of single
letters like R.

© Objects related by an equivalence relation can be thought of
as “the same,” in a sense to be made more precise later.
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SETES

The relation C,, = {(a, b) € Z? : m|a— b} on Z is an equivalence
relation, for every m € N.

This follows from the final example above.
Cp, is called congruence modulo m.
Instead of aCp,b one writes a = b (mod m).

Let n € Z and use the division algorithm to write n = gm +r,
0<r<m.

Then m|n — r so that n = r (mod m).
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Because remainders are unique, this proves:

Let m € N. For each n € 7Z there is a unique
re{0,1,2,...,m— 1} so that n =r (mod m).

Remark. In fact, Theorem 2 is equivalent to the division
algorithm.

Example 6

Let Cz = {(x,y) € R?|x —y € Z}. Then Cz is an equivalence
relation on R.

The proof is left as an exercise.

Instead of xCzy, one writes x =y (mod Z).
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Let S = Z x NT and define

Q@ = {((a, b),(c,d)) € §%|ad — bc = 0}.
Show that @ is an equivalence relation on S.

We must show @ is reflexive, symmetric and transitive.
1. Reflexive: Let (a,b) € Z x NT. Then (a, b)Q(a, b) since
ab—ba=0.
2. Symmetric: Let (a, b),(c,d) € Z x N*T.
Suppose that (a, b)Q(c,d). Then ad — bc = 0.

Hence
0= —(ad — bc) = bc — ad = cb — da,

so that (¢, d)Q(a, b).
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3. Transitive Let (a, b),(c,d),(e,f) € Z x N*.

Suppose (a, b)Q(c, d) and (¢, d)Q(e, ). Then ad — bc =0
and cf —de =0.

Consequently,

0= f(ad — bc) + b(cf — de) = fad — bde = (af — be)d.
Since d # 0, we have af — be =0 and thus (a, b)Q(e, ). O
Remark. Notice we only used the fact that second

coordinates are positive (as opposed to nonnegative) in the
final step.

Daileda Equivalence



