Functions

Ryan C. Daileda

Intro to Abstract Mathematics

Introduction

A function is a specific type of relation between two sets.

Definition

Let X, Y be sets. A function from X to Y is a relation $f \subset X \times Y$ so that for each $x \in X$ there is a unique $y \in Y$ with $(x, y) \in f$.

Remarks.

- Uniqueness means that if $(x, y) \in f$ and $(x, y') \in f$, then y = y' (this is the *vertical line test*).
- ② If f is a function from X to Y we write $f: X \to Y$, and f(x) = y whenever $(x, y) \in f$. Equivalently, $(x, f(x)) \in f$.
- Informally, a function is a "rule" that assigns one element of Y to each element of X.

1. Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d, e\}$. Then

$$f = \{(1, b), (2, a), (3, e), (4, a)\},$$

$$g = \{(1, a), (2, d), (3, b), (4, c)\},$$

are functions $X \to Y$. We write

$$f(1) = b$$
, $f(2) = a$, $f(3) = e$, $f(4) = a$, $g(1) = a$, $g(2) = d$, $g(3) = b$, $g(4) = c$.

2. However, with X, Y as above,

$$h = \{(1, a), (2, b), (3, b), (4, c), (1, d)\},\$$

$$k = \{(1, c), (2, a), (4, e)\}$$

are *not* functions $X \rightarrow Y$ (why?).

Daileda

3. Let $X = [0,3] \subset \mathbb{R}$ and $Y = \mathbb{R}$. Then

$$f = \{(x, (x-1)^2) \in X \times Y\}$$

is a function $X \to Y$. We write $f(x) = (x-1)^2$.

4. If A and B are nonempty sets, then

$$\pi_1 = \{ ((a, b), a) \mid (a, b) \in A \times B \},
\pi_2 = \{ ((a, b), b) \mid (a, b) \in A \times B \},$$

are functions, $A \times B \to A$ and $A \times B \to B$, respectively. We have

$$\pi_1(a,b)=a$$
 and $\pi_2(a,b)=b$.

 π_1 , π_2 are called the *projections* onto the first and second coordinates, respectively.

Domain, Codomain and Range

Definition

Let $f: X \to Y$ be a function. The *domain* of f is

$$Dom(f) = \{x \in X | f(x) = y \text{ for some } y \in Y\} = X.$$

The range of f is

$$Ran(f) = \{ y \in Y | f(x) = y \text{ for some } x \in X \} \subset Y.$$

The *codomain* of f is Codom(f) = Y.

Remarks.

- **1** The domain of every $f: X \to Y$ is always X.
- ② The codomain of every $f: X \to Y$ is always Y, however $Ran(f) \neq Y$ in general.

1.' If
$$X = \{1, 2, 3, 4\}$$
, $Y = \{a, b, c, d, e\}$, and
$$f = \{(1, b), (2, a), (3, e), (4, a)\},$$
$$g = \{(1, a), (2, d), (3, b), (4, c)\}.$$

(as above) then $Ran(f) = \{a, b, e\}$ and $Ran(g) = \{a, b, c, d\}$.

3. Recall $f : [0,3] \to \mathbb{R}$ given by $f(x) = (x-1)^2$.

Claim: Ran(f) = [0, 4].

Proof. (\subseteq) Let $y \in \text{Ran}(f)$. Then there is an $x \in [0,3]$ so that $y = f(x) = (x-1)^2$. We have

$$0 \le x \le 3 \implies -1 \le x - 1 \le 2 \implies 0 \le (x - 1)^2 \le 4.$$

Hence $y \in [0,4]$. Therefore Ran $(f) \subseteq [0,4]$.

(
$$\supseteq$$
) Let $y \in [0,4]$. Then $\sqrt{y} \in [0,2]$ so that $x = \sqrt{y} + 1 \in [0,3]$. Moreover,

$$f(x) = (x-1)^2 = ((\sqrt{y}+1)-1)^2 = y,$$

so that $y \in Ran(f)$. Thus $[0,4] \subseteq Ran(f)$.

4.' Recall the projections $\pi_1: A \times B \to A$ and $\pi_2: A \times B \to B$, given by

$$\pi_1(a,b) = a$$
 and $\pi_2(a,b) = b$.

Since every element of A or B occurs as a coordinate in $A \times B$:

$$Ran(\pi_1) = A$$
 and $Ran(\pi_2) = B$.

(provided
$$A, B \neq \emptyset$$
)

Images and Preimages

Definition

Let $f: X \to Y$ be a function.

1. For $A \subset X$, the *image of A under f* is

$$f(A) = \{f(a) \mid a \in A\} \subset Y.$$

2. For $B \subset Y$, the preimage of B under f is

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X.$$

Remark. Note that

$$f(X) = \text{Ran}(f)$$
 and $f^{-1}(Y) = f^{-1}(\text{Ran}(f)) = X$.

Again consider $X = \{1, 2, 3, 4\}$, $Y = \{a, b, c, d, e\}$, and the functions

$$f = \{(1,b), (2,a), (3,e), (4,a)\},\$$

$$g = \{(1,a), (2,d), (3,b), (4,c)\}.$$

Some images:

$$f(\{1\}) = \{b\},$$
 $f(\{1,2\}) = \{a,b\}$ $f(\{1,2,4\}) = \{a,b\},$ $g(\{1,2\}) = \{a,d\},$ $g(\{3,4\}) = \{b,c\}$ $g(\{2,3,4\}) = \{b,c,d\}.$

Some preimages:

$$f^{-1}(\{a,b\}) = \{1,2,4\},$$
 $f^{-1}(\{e\}) = \{3\},$ $f^{-1}(\{a,c\}) = \{2,4\},$ $f^{-1}(\{c,d\}) = \emptyset,$ $g^{-1}(\{a,b\}) = \{1,3\},$ $g^{-1}(\{c\}) = \{4\},$ $g^{-1}(\{a,e\}) = \{1\},$ $g^{-1}(\{e\}) = \emptyset.$

Daileda

Now consider $f:[0,3]\to\mathbb{R}$ given by $f(x)=(x-1)^2$.

If $x \in [0, 1]$, then $-1 \le x - 1 \le 0$.

Thus $f(x) = (x-1)^2 \in [0,1]$, so that $f([0,1]) \subset [0,1]$.

Conversely, if $y \in [0,1]$, then $1 - \sqrt{y} \in [0,1]$ and

$$y = f(1 - \sqrt{y}) \in f([0, 1]).$$

Hence $[0,1] \subset f([0,1])$.

Thus:

$$f([0,1]) = [0,1].$$

Example (Cont.)

On the other hand, we claim that $f^{-1}([0,1]) = [0,2]$.

Let $x \in [0,2]$. Then $-1 \le x - 1 \le 1$ so that

$$f(x) = (x-1)^2 \in [0,1] \implies x \in f^{-1}([0,1]) \implies [0,2] \subseteq f^{-1}([0,1]).$$

Now let $x \in f^{-1}([0,1])$. Then $f(x) = (x-1)^2 \in [0,1]$.

This implies $|x - 1| = \sqrt{(x - 1)^2} \le 1$. Hence $-1 \le x - 1 \le 1$.

Therefore $0 \le x \le 2$ or $x \in [0,2]$. Thus $f^{-1}([0,1]) \subseteq [0,2]$

Having established double-containment, we conclude that

$$f^{-1}([0,1]) = [0,2]$$

Properties of Images and Preimages

Theorem 1

Let $f: X \to Y$ be a function, $A \subset X$ and $B \subset Y$. Then:

- **1.** $f(f^{-1}(B)) \subset B$;
- **2.** $A \subset f^{-1}(f(A))$.

Proof. **1.** Let $y \in f(f^{-1}(B))$. Then y = f(x) for some $x \in f^{-1}(B)$.

But this means $y = f(x) \in B$. Hence $f(f^{-1}(B)) \subset B$.

2. Let $x \in A$. Then $f(x) \in f(A)$.

This is equivalent to $x \in f^{-1}(f(A))$. Hence $A \subset f^{-1}(f(A))$.

Remark

The containments of Theorem 1 can be proper.

Let
$$X = \{1, 2, 3, 4\}$$
, $Y = \{a, b, c, d, e\}$, and
$$f = \{(1, b), (2, a), (3, e), (4, a)\}.$$

Then

$$f(f^{-1}({a,d})) = f({2,4}) = {a} \subsetneq {a,d}$$

and

$$f^{-1}(f(\{2\})) = f^{-1}(\{a\}) = \{2,4\} \supsetneq \{2\}.$$

Theorem 2

Let $f: X \to Y$ be a function, $A, B \subset X$, and $C, D \subset Y$. Then:

- **1.** $f(A \cup B) = f(A) \cup f(B)$;
- **2.** $f(A \cap B) \subset f(A) \cap f(B)$;
- 3. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$;
- **4.** $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

Proof (sketch). We leave 1 and 3 as exercises.

2. Let $y \in f(A \cap B)$. Then there is an $x \in A \cap B$ so that y = f(x).

Since $x \in A$, $y = f(x) \in f(A)$. Since $x \in B$, $y = f(x) \in f(B)$.

Thus $y = f(x) \in f(A) \cap f(B)$. Hence $f(A \cap B) \subset f(A) \cap f(B)$.

4. Let $x \in f^{-1}(C \cap D)$. Then $f(x) \in C \cap D$.

Since
$$f(x) \in C$$
, $x \in f^{-1}(C)$. Since $f(x) \in D$, $x \in f^{-1}(D)$.

Thus
$$x \in f^{-1}(C) \cap f^{-1}(D)$$
. Hence $f^{-1}(C \cap D) \subset f^{-1}(C) \cap f^{-1}(D)$.

Now let $x \in f^{-1}(C) \cap f^{-1}(D)$.

Since
$$x \in f^{-1}(C)$$
, $f(x) \in C$. Since $x \in f^{-1}(D)$, $f(x) \in D$.

Therefore $f(x) \in C \cap D$, so that $x \in f^{-1}(C \cap D)$.

Hence
$$f^{-1}(C) \cap f^{-1}(D) \subset f^{-1}(C \cap D)$$
, as well.

Remark

The containment of part 2 can be proper.

Again consider
$$X = \{1,2,3,4\}$$
, $Y = \{a,b,c,d,e\}$, and
$$f = \{(1,b),(2,a),(3,e),(4,a)\}.$$

Let $A = \{2\}$ and $B = \{4\}$.

Then $A \cap B = \emptyset$ so that $f(A \cap B) = \emptyset$.

But
$$f(A) = f(B) = \{a\} \neq \emptyset$$
.