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Introduction

Let P(n) be a statement in the (free) variable n.

In its most basic form, (mathematical) induction is a proof
technique that may be applied to statements of the form

Vn e N(P(n)). (1)
The basic form easily generalizes to handle statements of the form

vn > a(P(n)), (2)
in which the universe of discourse is Z.

Warning: Induction is not the only way to prove statements of the
form (1) or (2). It is just one potential option.
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Induction as a proof technique follows from the following fact,
which is a consequence of the Well-Ordering Principle.

Theorem 1 (Principle of Mathematical Induction)

Let S C N. Suppose S has the following two properties:
1.0€S;
2.YneN(neS—=n+1€bS).

Then S = N.

Proof. Assume, for the sake of contradiction, that S # N.
Then N\ S # @. So WOP implies there is a least m € N\ S.
Since 0 € S, we have 0 € N\ S. Therefore m > 0.
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In particular, m— 1€ N. Butm—1¢N\S,som—1¢€S.
Property 2 of S then implies m=(m—1)+1€S.
Hence me SN (N\ S) = &, a contradiction. O

The Principle of Mathematical Induction (PMI) has the following
corollary.

Let P(n) be a statement in the (free) variable n. Suppose that:
1. P(0) is true;
2. Vne N(P(n) — P(n+1)) is true.
Then ¥n € N(P(n)) is true. That is, P(n) is true for every n € N.

Proof. Apply PMI to the truth set S of P(n). O
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Mathematical Induction

If P(n) is a statement in the (free) variable n, the preceding result
gives a procedure for proving Vn € N (P(n)):

1. (Base Case) Prove P(0).
2. (Inductive Step) Let n € N and prove P(n) = P(n+1).
This process is called (mathematical) induction.
Intuitively, induction results in a chain of implications
P(0)= P(1)= P(2)= P(3)=---.

If P(0) is true, then P(1) is true, and so P(2) is true, and so P(3)
is true, etc.
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Remarks

© Proving the base case is essential, since the truth of P(0) is
what causes the truth of the remaining statements.

© To prove P(n) = P(n+ 1) we begin by assuming P(n), and
deduce P(n+ 1) as a consequence.

© When we assume P(n), we are not assuming the conclusion.
We are simply proving an implication with hypothesis P(n).

Q In the inductive step, P(n) is called the inductive hypothesis.

© We can replace n € N with n > a (n,a € Z), but the base
case becomes P(a).
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SETES

ProvethatforallnEN,0+1+2+"'+”:@-

Scratch Work.

Let P(n) denote the equation 0 +1+2+---4+n= @
We are trying to prove that P(n) is true for all n € N. Let's try
induction.

Base Case: (n = 0) P(0) is the statement 0 = 0(02+1). This is true.

[BETI[LEY Induction



Examples

Inductive Step: We want to prove Vn € N(P(n) = P(n+ 1)).
We begin with “Let n € N" and try to prove P(n) = P(n+1).

To prove the implication (directly), we suppose P(n) is true and
deduce P(n+1).

n(n+1)

That is, we assume 0+ 142+ ---+n= and use this to

conclude 0 4+1+2+--- +n+(n+1):w.

To do this, we look for a connection between P(n) and P(n+ 1).

In this case, notice that the LHS of P(n+ 1) is the LHS of P(n)
plus n+ 1.
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So with the hypothesis P(n) we have

n(n+1)

0+1+2+ +n+(n+1)=——

n(n+1)

2

+(n+1):(n+1)(g+1)

n+2 (n+1)((n+1)+1)
2 2 ’

= (n+1)
which shows that P(n+ 1) is true! Let's get formal now.

Proof. We provethat0+1+2+~--+n:Mforall n € N by

. . 2
induction.

B . . _0(0+1) .
When n = 0, the equation in question becomes 0 = ===, which
is true.

Now let n € N and suppose that 0+1+2+---+n= @ holds.
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We then have

n(n+1)

0+1+42+ - +n+(n+1)=——

+(n+1)

(n+1)(n+2)

= b =
(as above) >

which shows that the n + 1 case holds as well.

By mathematical induction, the equation

n(n+1)
2

holds for all n € N. O

O+142+4 - +n=
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Prove that for all n € N, 5|n®> — n.

Proof. We induct on n € N.

When n = 0, we must prove that 5/0° — 0, which is clearly true.

Now let n > 0 and suppose that 5|n® — n. Write n® — n = 5k for
some k € N.

We have (using Pascal’s triangle)
(n+1)> —(n+1)=n®>+5n* +10n* +10n*> +5n+1—n—1

=n®—n +5(n* +2n +2n% + n)
——
5k
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=5(k 4+ n*+2n*+2n*> + n) = 5m,
meN

which shows that 5|(n +1)° — (n + 1), as needed.

By mathematical induction, we find that 5\n5 —nforallneN. O

Remark. This result is an instance of Fermat's Little Theorem,
which states that if p is prime, then

p|nP — n for all n € N.
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Prove that for all n > 4, n! > 2",

Proof. We induct on n > 4.

When n = 4, we have n! = 41 = 24 and 2" = 2* = 16, so that
41 > 24,

Now let n > 4 and suppose that n! > 2",

We then have
(n+1)!'=(n+1)n > (n+1)2" > (4 +1)2" >2.2" =21

By induction, the inequality n! > 2" holds for all n > 4. O
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When do | use induction?

Consider a statement of the form Vn € N(P(n)). Let n € N.

© If you can prove P(n) directly, there's no need for induction

Q If you see a connection between P(n) and P(n+ 1), then
induction may be an option.

Identifying the connection between P(n) and P(n+ 1) is the key
to every induction proof!
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More Examples

Example 4

For n € N, let F, = 22" + 1 (the nth Fermat number). Prove that
foralln>1, F, = (FoFiFp--- Fpo1) + 2.

Solution. We induct on n > 1.
When n = 1, we must show that F; = Fg + 2. Indeed,

Fo+2=2" 414+2=5=2211=F,.

Now let n > 1 and suppose that F, = (FoF1F2--- Fp_1) + 2.
Then FOF1F2 s F,,_l = Fn — 2. Thus

FoFiFy- - FooiFp+2=(F, —2)F, + 2
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=22 +1-2)2" +1)+2
=2 —-1DR¥ +1)+2

as needed.
By mathematical induction, the proof is complete. ]
Remark. The first few Fermat numbers are

3,5,17,257, 65537, 4294967297, . . .

Fo, F1, F», F3, F4 are prime, but Euler showed Fg is composite.

It is not known if F, is composite for all n > 4, or if F, is prime
infinitely often.
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Show that for all n € N, 24|(2-7" —3-5" 4+ 1).

Solution. We induct on n € N.

When n=0,2-7"—-3-.5"4+1=2—-3+1=0, which is divisible
by 24.

Let n € N and suppose that 24((2 - 7" — 3-5" 4 1).
Write 2-7" — 3 -5" + 1 = 24k for some k € Z. Then

2-7" =24k +3-5" — 1.
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Thus

2.7 35" 41=7.2.7"-3.5"1 1
=7(24k +3-5"—1)—3.5"1 11
=7-24k47-3-5"-7-5-3.5" 41
—=7-24k+3-5"(7-5) -6
=7-24k+6-5"—6=7-24k +6(5" —1)
=7-24k+6(5—-1)5"1+5"24... +5+1)

m

=7 24k +24m = 24(7Tk + m),

where we have used the identity
X" 1=X-1)X" P+ X"24... 4+ X +1)
from HW (with X = 5). This proves 24|(2- 7"t — 3.5t 1 4+ 1), O
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Example 6

Use induction to prove that
X"—1=(X-1)(X"1+X"24... £ X+ 1),
for all n > 1.

Remark. We have
n—1
X" X2 g X+1=> XK
k=0
When n =1, this means the sum is just X0 =1.
Solution. We induct on n > 1.
When n =1, the identity in question becomes X —1 = (X —1)-1,

which is certainly true.
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Let n > 1 and suppose that
X" 1=X-1)X" 4+ X"24... 4+ X +1)
Then

X —1D)X"+ X" 4 4 X +1)
= (X—DX"+ (X -1)(X" P+ 4 X+1)
= X" X" X" —1 =X 1

Appealing to mathematical induction completes the proof. O
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