Cartesian Products of Sets

Ryan C. Daileda

Trinity University

Intro to Abstract Mathematics

Ordered Pairs

Definition

Let A and B be sets. Given $a \in A$ and $b \in B$, the object (a, b) is called an *ordered pair*, with *first coordinate a* and *second coordinate b*.

Remarks.

Two ordered pairs are equal if and only if both of their coordinates match. That is,

$$(a,b) = (c,d)$$
 iff $a = c$ and $b = d$.

Onlike two element sets, the order of the coordinates in an ordered pair *matters*:

$$\{1,2\}=\{2,1\} \ \ {\rm but} \ \ (1,2)\neq (2,1).$$

Definition

Let A and B be sets. The (Cartesian) product of A and B is the set

$$A imes B = \{(a, b) \, | \, a \in A \text{ and } b \in B\}$$

of all ordered pairs (a, b) with $a \in A$ and $b \in B$.

Remarks.

• We write
$$A \times A = A^2$$
.

 $A \times B \neq B \times A \text{ unless } A = \emptyset, B = \emptyset \text{ or } A = B.$

Examples

• If
$$A = \{1, 2, 3\}$$
 and $B = \{x, y\}$, then
 $A \times B = \{(1, x), (2, x), (3, x), (1, y), (2, y), (3, y)\}.$

•
$$\mathbb{N}^2 = \mathbb{N} \times \mathbb{N} =$$

$$\begin{cases} (0,0), & (0,1), & (0,2), & (0,3), & \dots \\ (1,0), & (1,1), & (1,2), & (1,3), & \dots \\ (2,0), & (2,1), & (2,2), & (2,3), & \dots \\ (3,0), & (3,1), & (3,2), & (3,3), & \dots \\ \vdots & \vdots & \vdots & \vdots & \end{cases}$$

• $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) | x, y \in \mathbb{R}\}$ is the Cartesian plane.

Let A, B, C, D be sets.

1. $A \times B \subset C \times D$ iff $A \subset C$ and $B \subset D$ (if $A \neq \emptyset$ and $B \neq \emptyset$)

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

3.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

4.
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

5.
$$(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$$

Proofs

1. Suppose $A \times B \subset C \times D$. Let $a \in A$ and $b \in B$.

Then $(a, b) \in A \times B$, and so $(a, b) \in C \times D$, by hypothesis.

Thus $a \in C$ and $b \in D$. Since a and b were arbitrary, $A \subset C$ and $B \subset D$.

The converse is left as an exercise.

2. We have

 $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \text{ and } b \in B \cap C$ $\Leftrightarrow a \in A \text{ and } b \in B \text{ and } b \in C$ $\Leftrightarrow (a, b) \in A \times B \text{ and } (a, b) \in A \times C$ $\Leftrightarrow (a, b) \in (A \times B) \cap (A \times C).$ Properties **3.–5.** are similar, and are left as exercises.

Warning. Property **1**. *does not* say that *every* subset of $C \times D$ has the form $A \times B$.

For example, if $C = D = \{1,2\}$, then $S = \{(1,1), (2,2)\} \subset C^2$, but $S \neq A \times B$ for any A, B.

Warning. Notice that property 5. is not an equality.

For example, if A = [1,3], B = [2,5], C = [2,4], D = [4,6] (closed intervals in \mathbb{R}), then $A \cup C = [1,4]$ and $B \cup D = [2,6]$.

The sets $A \times B$, $C \times D$ and $(A \cup C) \times (B \cup D)$ are all rectangles in \mathbb{R}^2 , and $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$ by inspection.