Relations

Ryan C. Daileda

Intro to Abstract Mathematics

Domain and Range

Relations

Definition

Let A and B be sets. A relation from A to B is a subset $R \subset A \times B$.

Remarks.

- **1** If R is a relation from A to B and $(a, b) \in R$, we write aRb.
- ② Although *R* can be completely arbitrary, we think of *aRb* as specifying a *relationship* between *a* and *b*.
- **3** If $R \subset A^2$, then we say R is a relation on A.

Examples

1. Let $A = \{1, 2, 3\}$, $B = \{x, y\}$. Then

Interlude: Power Sets

$$R = \{(1, x), (1, y), (2, x), (3, y)\}$$

is a relation from A to B. We have 1Rx, 1Ry, 2Rx and 3Ry.

- **2.** Let $L = \{(x, y) \in \mathbb{N}^2 \mid x < y\}$. Then *L* is a relation on \mathbb{N} with, e.g., 2*L*3, 0*L*7, and 4*L*13.
- 3. Let $E = \{(x, y) \in \mathbb{R}^2 | y^2 = x^3 x\}$. Then E is a relation on \mathbb{R} with, e.g., 0E0, $(\pm 1)E0$ and $2E(\pm \sqrt{6})$.
- **4.** Let $C = \{(m, n) \in \mathbb{Z} \mid 7 \text{ divides } n m\}$. Then C is a relation on \mathbb{Z} with, e.g., 8C1, 4C25, 0C49 and 5C(-2).
- **5.** For any set A, let $i_A = \{(a, a) \mid a \in A\}$. Then i_A is a relation on A.

The Power Set of a Set

Our next examples require the notion of a *power set*.

Definition

Relations

Let A be a set. The *power set* of A is the set

$$\mathcal{P}(A) = \{B \mid B \subset A\},\$$

the set whose *elements* are the *subsets* of A.

Remark. Note that $B \subset A$ iff $B \in \mathcal{P}(A)$. Examples.

- **a.** $\mathcal{P}(\emptyset) = \{\emptyset\}.$
- **b.** $\mathcal{P}(\{x,y\}) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}.$
- **c.** R is a relation from A to B iff $R \in \mathcal{P}(A \times B)$.

- **d.** The sets $\{7k+3 \mid k \in \mathbb{N}\}$, $\{n \in \mathbb{N} \mid n \text{ is even}\}$ and $\{p \mid p \text{ is prime}\}$ are elements of $\mathcal{P}(\mathbb{N})$.
- **e.** We will see that there are as many elements of $\mathcal{P}(\mathbb{N})$ as there are real numbers.

Remarks.

- If $n \in \mathbb{N}$ and A has exactly n elements, then $\mathcal{P}(A)$ has exactly 2^n elements. Hence the name "power set."
- ② Another notation for $\mathcal{P}(A)$ is 2^A .
- **3** $\mathcal{P}(A)$ is always has more elements than A, even when A is infinite.

Back to Relations

Examples (cont.). Let A be a set.

6. $M = \{(a, B) \in A \times \mathcal{P}(A) \mid a \in B\}$ is a relation from A to $\mathcal{P}(A)$.

Domain and Range

7. $S = \{(B, C) \in \mathcal{P}(A)^2 \mid C \subset B\}$ is a relation on $\mathcal{P}(A)$.

Definition

Let R be a relation from A to B. The domain of R is

$$\mathsf{Dom}(R) = \{ a \in A \, | \, \exists b \in B(aRb) \} \subset A.$$

The *range* of R is

$$Ran(R) = \{b \in B \mid \exists a \in A(aRb)\} \subset B.$$

- 1. For the relation $R = \{(1, x), (1, y), (2, x), (3, y)\}$: $Dom(R) = \{1, 2, 3\} = A, Ran(R) = \{x, y\} = B.$
- 2. For the relation $L = \{(x,y) \in \mathbb{N}^2 \mid x < y\}$: $\mathsf{Dom}(L) = \mathbb{N}, \ \mathsf{Ran}(L) = \mathbb{N}^+.$
- 3. For the relation $E = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x^3 x\}$: $\mathsf{Dom}(E) = \{x \in \mathbb{R} \mid x^3 x \ge 0\} = [-1, 0] \cup [1, \infty), \ \mathsf{Ran}(E) = \mathbb{R}.$
- **4.** For the relation $C = \{(m, n) \in \mathbb{Z}^2 \mid 7 \text{ divides } n m\}$: $\mathsf{Dom}(C) = \mathsf{Ran}(C) = \mathbb{Z}.$

Domain and Range

Inverses and Compositions

Definition

Let R be a relation from A to B. The inverse of R is

$$R^{-1} = \{(b, a) \in B \times A \mid aRb\}.$$

If S is a relation from B to C, the composition of S and R is

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B(aRb \land bSc)\}.$$

Remarks.

- **1** The inverse of a relation from A to B is a relation from B to A. One has aRb iff $bR^{-1}a$.
- 2 The composition of a relation from A to B with a relation from B to C is a relation from A to C.

Examples Again

- 1. The inverse of $R = \{(1, x), (1, y), (2, x), (3, y)\}$ is $R^{-1} = \{(x, 1), (x, 2), (y, 1), (y, 3)\}.$
- **2.** The inverse of $L = \{(x, y) \in \mathbb{N}^2 \mid x < y\}$ is $L^{-1} = \{(x, y) \in \mathbb{N}^2 \mid x > y\}.$
- **3.** The inverse of $E = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x^3 x\}$ is $E^{-1} = \{(x, y) | x^2 = y^3 - y\}.$
- **4.** The inverse of $C = \{(m, n) \in \mathbb{Z}^2 \mid 7 \text{ divides } n m\}$ is $C^{-1} = \{(m, n) \mid 7 \text{ divides } m - n\} = C.$

Some Compositions

Example 1

Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$. Let

$$R = \{(1,4), (1,5), (2,5), (3,6)\}$$

be a relation from A to B, and let

$$S = \{(4,5), (4,6), (5,4), (6,6)\}$$

be a relation on B. Compute $S \circ R$ and $S \circ S^{-1}$.

Solution. Since 1R4, 4S5 and 4S6, we have $(1,5),(1,6) \in S \circ R$.

Since 1R5, 2R5 and 5S4, we find that $(1,4), (2,4) \in S \circ R$.

Since 3R6 and 6S6, we see that $(3,6) \in S \circ R$.

It follows that

$$S \circ R = \{(1,4), (1,5), (1,6), (2,4), (3,6)\}.$$

Clearly

Relations

$$S^{-1} = \{(5,4), (6,4), (4,5), (6,6)\}.$$

Since $4S^{-1}5$ and 5S4, we have $(4,4) \in S \circ S^{-1}$.

Since $5S^{-1}4$, $6S^{-1}4$ and 4S5, 4S6, we have

$$(5,5),(5,6),(6,5),(6,6) \in S \circ S^{-1}.$$

Since $6S^{-1}6$ and 6S6, we have $(6,6) \in S \circ S^{-1}$. Thus

$$S \circ S^{-1} = \{(4,4), (5,5), (5,6), (6,5), (6,6)\}.$$

Example 2

Let $F = \{(x, x^2) | x \in \mathbb{R}\}$ and $G = \{(x, x + 3) | x \in \mathbb{R}\}$ be relations on \mathbb{R} . Determine $F \circ G$ and $G \circ F$.

Solution. Let $x \in \mathbb{R}$. Then xFx^2 . Furthermore, since $x^2 \in \mathbb{R}$, we have $x^2G(x^2+3)$. Therefore $(x,x^2+3) \in G \circ F$.

Conversely, if $(x,y) \in G \circ F$, then there is a $z \in \mathbb{R}$ so that xFz and zGy. Thus $z = x^2$ and y = z + 3, so that $y = x^2 + 3$. That is, $(x,y) = (x,x^2 + 3)$.

It follows that $G \circ F = \{(x, x^2 + 3) \mid x \in \mathbb{R}\}.$

Similarly one finds that $F \circ G = \{(x, (x+3)^2) \mid x \in \mathbb{R}\}.$

Properties

The domain, range, inverse, and composition interact as follows.

Theorem 1

Let R be a relation from A to B, let S be a relation from B to C, and let T be a relation from C to D. Then:

- 1. $(R^{-1})^{-1} = R$.
- 2. $Dom(R^{-1}) = Ran(R)$.
- 3. $Ran(R^{-1}) = Dom(R)$.
- **4.** $T \circ (S \circ R) = (T \circ S) \circ R$.
- **5.** $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Proof. We prove part **5** only. See the text for the rest.

Proof of Part 5

Note that both $(S \circ R)^{-1}$ and $R^{-1} \circ S^{-1}$ are relations from C to A.

Domain and Range

Let
$$(c, a) \in (S \circ R)^{-1}$$
. Then $(a, c) \in S \circ R$.

Thus there exists $b \in B$ so that aRb and bSc.

Then $cS^{-1}b$ and $bR^{-1}a$, so that $(c, a) \in R^{-1} \circ S^{-1}$.

This proves that $(S \circ R)^{-1} \subset R^{-1} \circ S^{-1}$.

The opposite containment follows by reversing these steps.