Relations

Ryan C. Daileda

Trinity University

Intro to Abstract Mathematics

Definition

Let A and B be sets. A relation from A to B is a subset $R \subset A \times B$.

Remarks.

- **1** If R is a relation from A to B and $(a, b) \in R$, we write aRb.
- 2 Although R can be completely arbitrary, we think of aRb as specifying a *relationship* between a and b.

9 If
$$
R \subset A^2
$$
, then we say R is a relation on A.

1. Let
$$
A = \{1, 2, 3\}
$$
, $B = \{x, y\}$. Then

$$
R = \{(1, x), (1, y), (2, x), (3, y)\}
$$

is a relation from A to B. We have $1Rx$, $1Ry$, $2Rx$ and $3Ry$.

- **2.** Let $L = \{(x, y) \in \mathbb{N}^2 \mid x < y\}$. Then L is a relation on $\mathbb N$ with, e.g., 2L3, 0L7, and 4L13.
- **3.** Let $E = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x^3 x\}$. Then E is a relation on $\mathbb R$ with, e.g., 0E0, $(\pm 1)E0$ and $2E(\pm \sqrt{6})$.
- 4. Let $C = \{(m, n) \in \mathbb{Z} \mid 7 \text{ divides } n-m\}$. Then C is a relation on ^Z with, e.g., 8C1, 4C25, 0C49 and 5C(−2).
- **5.** For any set A, let $i_A = \{(a, a) | a \in A\}$. Then i_A is a relation on A.

The Power Set of a Set

Our next examples require the notion of a *power set*.

Definition

Let A be a set. The *power set* of A is the set

 $\mathcal{P}(A) = \{B \mid B \subset A\},\$

the set whose elements are the subsets of A.

Remark. Note that $B \subset A$ iff $B \in \mathcal{P}(A)$.

Examples.

$$
a. \ \mathcal{P}(\varnothing) = \{\varnothing\}.
$$

b. $\mathcal{P}(\{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}.$

c. R is a relation from A to B iff $R \in \mathcal{P}(A \times B)$.

- **d.** The sets $\{7k+3 \mid k \in \mathbb{N}\}, \{n \in \mathbb{N} \mid n \text{ is even}\}\$ and $\{p \mid p$ is prime} are elements of $\mathcal{P}(\mathbb{N})$.
- e. We will see that there are as many elements of $\mathcal{P}(\mathbb{N})$ as there are real numbers.

Remarks.

- **1** If $n \in \mathbb{N}$ and A has exactly n elements, then $\mathcal{P}(A)$ has exactly 2ⁿ elements. Hence the name "power set."
- **2** Another notation for $\mathcal{P}(A)$ is 2^A .
- Θ $\mathcal{P}(A)$ is always has more elements than A, even when A is infinite.

Examples (cont.). Let A be a set.

- **6.** $M = \{(a, B) \in A \times P(A) | a \in B\}$ is a relation from A to $\mathcal{P}(A)$.
- **7.** $S = \{(B, C) \in \mathcal{P}(A)^2 \mid C \subset B\}$ is a relation on $\mathcal{P}(A)$.

Definition

Let R be a relation from A to B . The *domain* of R is

$$
Dom(R) = \{a \in A \mid \exists b \in B(aRb)\} \subset A.
$$

The *range* of R is

$$
Ran(R) = \{b \in B \mid \exists a \in A(aRb)\} \subset B.
$$

Back to Our Examples

1. For the relation
$$
R = \{(1, x), (1, y), (2, x), (3, y)\}
$$
:
Dom $(R) = \{1, 2, 3\} = A$, Ran $(R) = \{x, y\} = B$.

2. For the relation
$$
L = \{(x, y) \in \mathbb{N}^2 | x < y\}
$$
:
Dom $(L) = \mathbb{N}$, Ran $(L) = \mathbb{N}^+$.

3. For the relation
$$
E = \{(x, y) \in \mathbb{R}^2 | y^2 = x^3 - x\}
$$
:
Dom $(E) = \{x \in \mathbb{R} | x^3 - x \ge 0\} = [-1, 0] \cup [1, \infty)$, Ran $(E) = \mathbb{R}$.

4. For the relation $C = \{(m, n) \in \mathbb{Z}^2 | 7 \text{ divides } n - m\}$: $Dom(C) = Ran(C) = \mathbb{Z}$.

Inverses and Compositions

Definition

Let R be a relation from A to B. The *inverse* of R is

$$
R^{-1}=\{(b,a)\in B\times A\,|\,aRb\}.
$$

If S is a relation from B to C, the composition of S and R is

$$
S\circ R=\{(a,c)\in A\times C\,|\,\exists b\in B(aRb\wedge bSc)\}.
$$

Remarks.

- \bullet The inverse of a relation from A to B is a relation from B to A. One has aRb iff $bR^{-1}a$.
- **2** The composition of a relation from A to B with a relation from B to C is a relation from A to C.

Examples Again

1. The inverse of
$$
R = \{(1, x), (1, y), (2, x), (3, y)\}
$$
 is

$$
R^{-1} = \{(x, 1), (x, 2), (y, 1), (y, 3)\}.
$$

2. The inverse of
$$
L = \{(x, y) \in \mathbb{N}^2 | x < y\}
$$
 is

$$
L^{-1} = \{(x, y) \in \mathbb{N}^2 | x > y\}.
$$

3. The inverse of
$$
E = \{(x, y) \in \mathbb{R}^2 | y^2 = x^3 - x \}
$$
 is

$$
E^{-1} = \{(x, y) | x^2 = y^3 - y \}.
$$

4. The inverse of $C = \{(m, n) \in \mathbb{Z}^2 | 7 \text{ divides } n - m\}$ is $C^{-1} = \{(m, n) | 7 \text{ divides } m - n\} = C.$

Some Compositions

Example 1

Let
$$
A = \{1, 2, 3\}
$$
 and $B = \{4, 5, 6\}$. Let

$$
R = \{(1,4), (1,5), (2,5), (3,6)\}
$$

be a relation from A to B , and let

$$
S = \{(4,5), (4,6), (5,4), (6,6)\}
$$

be a relation on B. Compute $S \circ R$ and $S \circ S^{-1}$.

Solution. Since 1R4, 4S5 and 4S6, we have $(1, 5)$, $(1, 6) \in S \circ R$. Since 1R5, 2R5 and 5S4, we find that $(1, 4), (2, 4) \in S \circ R$. Since 3R6 and 6S6, we see that $(3,6) \in S \circ R$.

П

It follows that

$$
S \circ R = \{(1,4), (1,5), (1,6), (2,4), (3,6)\}.
$$

Clearly

$$
S^{-1}=\{(5,4),(6,4),(4,5),(6,6)\}.
$$

Since 4 S^{-1} 5 and 5 S 4, we have $(4,4) \in S \circ S^{-1}$.

Since $5S^{-1}$ 4, $6S^{-1}$ 4 and 4 S 5, 4 S 6, we have

 $(5, 5), (5, 6), (6, 5), (6, 6) \in S \circ S^{-1}.$

Since $65^{-1}6$ and 656 , we have $(6,6) \in S \circ S^{-1}$. Thus

 $S \circ S^{-1} = \{(4,4), (5,5), (5,6), (6,5), (6,6)\}.$

l 1

Example 2

Let $F = \{(x, x^2) | x \in \mathbb{R}\}$ and $G = \{(x, x + 3) | x \in \mathbb{R}\}$ be relations on $\mathbb R$. Determine $F \circ G$ and $G \circ F$.

Solution. Let $x \in \mathbb{R}$. Then xFx^2 . Furthermore, since $x^2 \in \mathbb{R}$, we have $x^2G(x^2+3)$. Therefore $(x, x^2+3) \in G \circ F$.

Conversely, if $(x, y) \in G \circ F$, then there is a $z \in \mathbb{R}$ so that xFz and *zGy*. Thus $z = x^2$ and $y = z + 3$, so that $y = x^2 + 3$. That is, $(x, y) = (x, x² + 3).$

It follows that $G \circ F = \{(x, x^2 + 3) | x \in \mathbb{R}\}.$

Similarly one finds that $F \circ G = \{(x, (x + 3)^2) | x \in \mathbb{R}\}.$

Properties

The domain, range, inverse, and composition interact as follows.

Theorem 1

Let R be a relation from A to B, let S be a relation from B to C, and let T be a relation from C to D. Then:

1. $(R^{-1})^{-1} = R$. **2.** Dom (R^{-1}) = Ran (R) . **3.** Ran $(R^{-1}) = \text{Dom}(R)$. 4. $T \circ (S \circ R) = (T \circ S) \circ R$. 5. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Proof. We prove part 5 only. See the text for the rest.

Note that both $(S \circ R)^{-1}$ and $R^{-1} \circ S^{-1}$ are relations from C to A.

Let $(c, a) \in (S \circ R)^{-1}$. Then $(a, c) \in S \circ R$.

Thus there exists $b \in B$ so that aRb and bSc.

Then $cS^{-1}b$ and $bR^{-1}a$, so that $(c, a) \in R^{-1} \circ S^{-1}$.

This proves that $(S \circ R)^{-1} \subset R^{-1} \circ S^{-1}$.

The opposite containment follows by reversing these steps.

П