Strong Induction

Ryan C. Daileda

Trinity University

Intro to Abstract Mathematics

Motivating Example

Consider the sequence $\{a_n\}_{n\in\mathbb{N}}$ of integers defined by $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = 5a_n - 6a_{n-1}$ for $n \ge 1$.

We say that the sequence $\{a_n\}_{n\in\mathbb{N}}$ is defined *recursively*: any given term is determined by (the two) terms before it.

The first few terms of the sequence are

 $0, 1, 5, 19, 65, 211, 665, \ldots$

In general, to compute a_n recursively for a given n, one must first compute $a_0, a_1, a_2, a_3, \ldots, a_{n-1}$.

Question 1: Can we find an *explicit* formula for a_n in terms of n alone? That is, can we express a_n in *closed form*?

Answer 1: Yes! We claim that $a_n = 3^n - 2^n$ for all $n \in \mathbb{N}$.

Indeed, for example we have

$$3^{0} - 2^{0} = 1 - 1 = 0 = a_{0},$$

$$3^{1} - 2^{1} = 3 - 2 = 1 = a_{1},$$

$$3^{2} - 2^{2} = 9 - 4 = 5 = a_{2},$$

$$3^{3} - 2^{3} = 27 - 8 = 19 = a_{3},$$

$$3^{4} - 2^{4} = 81 - 16 = 65 = a_{4},$$

$$3^{5} - 2^{5} = 243 - 32 = 211 = a_{5}.$$

Question 2: How can we prove this formula in general?

Answer 2: The recursive relationship $a_{n+1} = 5a_n - 6a_{n-1}$ makes induction a clear choice.

Missing Information

We just established 5 base cases, so let's look at the inductive step.

Suppose $a_n = 3^n - 2^n$ for some $n \ge 0$. Then

$$a_{n+1} = 5a_n - 6a_{n-1} = 5(3^n - 2^n) - 6\underbrace{a_{n-1}}_? = \cdots?$$

The inductive hypothesis says nothing about a_{n-1} . What now?

If we also knew that $a_{n-1} = 3^{n-1} - 2^{n-1}$, then we'd have

$$5(3^{n} - 2^{n}) - 6a_{n-1} = 5(3^{n} - 2^{n}) - 6(3^{n-1} - 2^{n-1})$$

= 5 \cdot 3^{n} - 2 \cdot 3 \cdot 3^{n-1} - 5 \cdot 2^{n} + 3 \cdot 2 \cdot 2^{n-1}

$$= 5 \cdot 3^{n} - 2 \cdot 3^{n} - 5 \cdot 2^{n} + 3 \cdot 2^{n}$$

= 3 \cdot 3^{n} - 2 \cdot 2^{n} = 3^{n+1} - 2^{n+1},

which proves the n + 1 case.

So the induction works provided we can take *two* previous cases as our inductive hypothesis.

This brings us to a weak form of strong induction known as *Recursive Induction.*

Recursive Induction allows one to assume any fixed number $k \ge 1$ of previous cases in the inductive hypothesis.

Recursive Induction

Theorem 1 (Recursive Induction)

Let P(n) be a statement in the free variable n. Suppose there is a $k \in \mathbb{N}^+$ so that:

- **1.** $P(0), P(1), P(2), \dots, P(k-1)$ are all true;
- **2.** For all $n \ge k 1$,

$$[P(n) \wedge P(n-1) \wedge \cdots \wedge P(n-k+1)] \Rightarrow P(n+1).$$

Then P(n) is true for all $n \in \mathbb{N}$.

Remarks.

- This says we can use k previous cases when we induct, provided we check k base cases.
- Recursive induction and standard induction are logically equivalent.

Back to the Sequence

Let's finish off our example.

Example 1

Define a sequence $\{a_n\}$ by $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = 5a_n - 6a_{n-1}$ for $n \ge 1$. Prove that $a_n = 3^n - 2^n$ for all $n \in \mathbb{N}$.

Solution. We use (recursive) induction on $n \ge 0$ (with k = 2).

When n = 0 we have $a_0 = 0 = 3^0 - 2^0$, so the formula in question holds.

When n = 1 we have $a_1 = 1 = 3^1 - 2^1$, so the formula continues to hold.

Now let $n \ge 1$. Suppose $a_n = 3^n - 2^n$ and $a_{n-1} = 3^{n-1} - 2^{n-1}$.

11

Since $n \ge 1$, we know that

$$a_{n+1} = 5a_n - 6a_{n-1}$$

= 5(3ⁿ - 2ⁿ) - 6(3ⁿ⁻¹ - 2ⁿ⁻¹)
: (as above)
= 3ⁿ⁺¹ - 2ⁿ⁺¹,

which is the n + 1 case of the formula.

By (recursive) induction, the formula holds for all $n \ge 0$.

Remark. We always start the inductive step with "Let $n \ge \ell$," where $n = \ell$ is the final base case.

Another Motivating Example

Consider the following well-known result.

Example 2

Every integer $n \ge 2$ is either prime or a product of primes.

Remark. Here "prime" means "prime number."

Intuitively, if *n* isn't prime, we can factor it as n = ab with a, b > 1.

If they aren't prime, factor a and b in the same way. Then factor their factors, etc.

Stop when all the factors become prime, as they must since indefinite factorization is impossible.

We can give a "clean" version of this argument using induction.

Let P(n) = "n is prime or a product of primes."

Since 2 is prime, P(2) is true, and we have at least one base case.

Let $n \ge 2$. We need to suppose P(m) for some $2 \le m < n+1$ (the inductive hypothesis) and conclude P(n+1) is true.

Now n + 1 is either prime or composite.

If n + 1 is prime, P(n + 1) is true automatically. So suppose n + 1 is composite.

Then n + 1 = ab with 1 < a, b < n + 1.

Which Hypotheses?

If P(a) and P(b) are true, then a, b are both primes or products of primes.

Thus n + 1 = ab is a product of primes, and P(n + 1) is true.

Question: In order for this argument to work, which P(m) do we need to include in the inductive hypothesis?

All we know about the divisors a, b of n + 1 is 1 < a, b < n + 1.

So we get "greedy" and suppose...

Answer: All P(m) for 1 < m < n + 1.

This is known as strong induction.

Strong Induction

Theorem 2 (Strong Induction)

Let P(n) be a statement in the free variable n. Suppose that: **1.** P(0) is true; **2.** For all $n \in \mathbb{N}$, $[P(n) \land P(n-1) \land \cdots \land P(0)] \Rightarrow P(n+1)$. Then P(n) is true for all $n \in \mathbb{N}$.

Remarks.

- Rather than say "Suppose P(n) and P(n-1) and ...," one simply says "Suppose P(k) for all 0 ≤ k ≤ n."
- Strong induction is also logically equivalent to standard induction.

Back to Example 2

Let's return to our previous example.

Example 2

Every integer $n \ge 2$ is either prime or a product of primes.

Solution. We use (strong) induction on $n \ge 2$.

When n = 2 the conclusion holds, since 2 is prime.

Let $n \ge 2$ and suppose that for all $2 \le k \le n$, k is either prime or a product of primes.

Either n + 1 is prime or n + 1 = ab with $2 \le a, b, \le n$.

In the latter case, the inductive hypothesis implies that a, b are primes or products of primes.

Then n + 1 = ab is a product of primes.

So n + 1 is either prime or a product of primes, as needed.

By (strong) induction, the conclusion holds for all $n \ge 2$.

Remark. Note that although our inductive hypothesis is stronger than in recursive induction, we still only need a single base case.