Strong Induction

Ryan C. Daileda

Intro to Abstract Mathematics

Motivating Example

Consider the sequence ${a_n}_{n\in\mathbb{N}}$ of integers defined by $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = 5a_n - 6a_{n-1}$ for $n \ge 1$.

We say that the sequence ${a_n}_{n\in\mathbb{N}}$ is defined *recursively*: any given term is determined by (the two) terms before it.

The first few terms of the sequence are

 $0, 1, 5, 19, 65, 211, 665, \ldots$

In general, to compute *a*n recursively for a given *n*, one must first compute *a*0, *a*1, *a*2, *a*3,*a*n−1.

Question 1: Can we find an *explicit* formula for *a*n in terms of *n* alone? That is, can we express *a*n in *closed form*?

Answer 1: Yes! We claim that $a_n = 3^n - 2^n$ for all $n \in \mathbb{N}$.

Indeed, for example we have

$$
30 - 20 = 1 - 1 = 0 = a0,\n31 - 21 = 3 - 2 = 1 = a1,\n32 - 22 = 9 - 4 = 5 = a2,\n33 - 23 = 27 - 8 = 19 = a3,\n34 - 24 = 81 - 16 = 65 = a4,\n35 - 25 = 243 - 32 = 211 = a5.
$$

Question 2: How can we prove this formula in general?

Answer 2: The recursive relationship $a_{n+1} = 5a_n - 6a_{n-1}$ makes induction a clear choice.

Missing Information

We just established 5 base cases, so let's look at the inductive step.

Suppose $a_n = 3^n - 2^n$ for some $n \ge 0$. Then

$$
a_{n+1} = 5a_n - 6a_{n-1} = 5(3^n - 2^n) - 6a_{n-1} = \cdots?
$$

The inductive hypothesis says nothing about *a*_{n−1}. What now?

If we also knew that $a_{n-1} = 3^{n-1} - 2^{n-1}$, then we'd have

$$
5(3n - 2n) - 6an-1 = 5(3n - 2n) - 6(3n-1 - 2n-1)
$$

= 5 · 3ⁿ - 2 · 3 · 3ⁿ⁻¹ - 5 · 2ⁿ + 3 · 2 · 2ⁿ⁻¹

$$
= 5 \cdot 3^{n} - 2 \cdot 3^{n} - 5 \cdot 2^{n} + 3 \cdot 2^{n}
$$

= 3 \cdot 3^{n} - 2 \cdot 2^{n} = 3^{n+1} - 2^{n+1},

which proves the $n+1$ case.

So the induction works provided we can take *two* previous cases as our inductive hypothesis.

This brings us to a weak form of strong induction known as *Recursive Induction.*

Recursive Induction allows one to assume any fixed number $k \geq 1$ of previous cases in the inductive hypothesis.

Recursive Induction

Theorem 1 (Recursive Induction)

Let P(*n*) *be a statement in the free variable n. Suppose there is a* $k \in \mathbb{N}^+$ *so that:*

- 1. *P*(0), *P*(1), *P*(2), . . . , *P*(*k* − 1) *are all true;*
- 2. For all $n > k 1$,

$$
[P(n) \wedge P(n-1) \wedge \cdots \wedge P(n-k+1)] \Rightarrow P(n+1).
$$

Then $P(n)$ *is true for all* $n \in \mathbb{N}$.

Remarks.

- **1** This says we can use *k* previous cases when we induct, provided we check *k* base cases.
- 2 Recursive induction and standard induction are logically equivalent.

Back to the Sequence

Let's finish off our example.

Example 1

Define a sequence ${a_n}$ by $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = 5a_n - 6a_{n-1}$ for $n \geq 1$. Prove that $a_n = 3^n - 2^n$ for all $n \in \mathbb{N}$.

Solution. We use (recursive) induction on $n > 0$ (with $k = 2$).

When $n=0$ we have $a_0=0=3^0-2^0$, so the formula in question holds.

When $n=1$ we have $\displaystyle a_1=1=3^1-2^1$, so the formula continues to hold.

Now let $n \ge 1$. Suppose $a_n = 3^n - 2^n$ and $a_{n-1} = 3^{n-1} - 2^{n-1}$.

П

Since $n > 1$, we know that

$$
a_{n+1} = 5a_n - 6a_{n-1}
$$

= 5(3ⁿ - 2ⁿ) - 6(3ⁿ⁻¹ - 2ⁿ⁻¹)
: (as above)
= 3ⁿ⁺¹ - 2ⁿ⁺¹,

which is the $n + 1$ case of the formula.

By (recursive) induction, the formula holds for all *n* ≥ 0.

Remark. We always start the inductive step with "Let $n > l$." where $n = \ell$ is the final base case.

Another Motivating Example

Consider the following well-known result.

Example 2

Every integer $n \geq 2$ is either prime or a product of primes.

Remark. Here "prime" means "prime number."

Intuitively, if *n* isn't prime, we can factor it as $n = ab$ with $a, b > 1$.

If they aren't prime, factor *a* and *b* in the same way. Then factor their factors, etc.

Stop when all the factors become prime, as they must since indefinite factorization is impossible.

We can give a "clean" version of this argument using induction.

Let $P(n) = "n$ is prime or a product of primes."

Since 2 is prime, $P(2)$ is true, and we have at least one base case.

Let $n \geq 2$. We need to suppose $P(m)$ for some $2 \leq m < n+1$ (the inductive hypothesis) and conclude $P(n + 1)$ is true.

Now $n+1$ is either prime or composite.

If $n+1$ is prime, $P(n+1)$ is true automatically. So suppose $n+1$ is composite.

Then $n+1 = ab$ with $1 < a, b < n+1$.

Which Hypotheses?

If *P*(*a*) and *P*(*b*) are true, then *a*, *b* are both primes or products of primes.

Thus $n + 1 = ab$ is a product of primes, and $P(n + 1)$ is true.

Question: In order for this argument to work, which *P*(*m*) do we need to include in the inductive hypothesis?

All we know about the divisors *a*, *b* of $n+1$ is $1 < a, b < n+1$.

So we get "greedy" and suppose...

Answer: All $P(m)$ for $1 < m < n+1$.

This is known as *strong induction*.

Strong Induction

Theorem 2 (Strong Induction)

Let P(*n*) *be a statement in the free variable n. Suppose that:* 1. *P*(0) *is true;* 2. For all $n \in \mathbb{N}$, $[P(n) \wedge P(n-1) \wedge \cdots \wedge P(0)] \Rightarrow P(n+1)$. *Then* $P(n)$ *is true for all* $n \in \mathbb{N}$.

Remarks.

- ¹ Rather than say "Suppose *P*(*n*) and *P*(*n* − 1) and . . .," one simply says "Suppose $P(k)$ for all $0 \le k \le n$."
- 2 Strong induction is also logically equivalent to standard induction.

Back to Example 2

Let's return to our previous example.

Example 2

Every integer $n \geq 2$ is either prime or a product of primes.

Solution. We use (strong) induction on *n* ≥ 2.

When $n = 2$ the conclusion holds, since 2 is prime.

Let $n \geq 2$ and suppose that for all $2 \leq k \leq n$, *k* is either prime or a product of primes.

Either $n+1$ is prime or $n+1 = ab$ with $2 \le a, b \le n$.

П

In the latter case, the inductive hypothesis implies that *a*, *b* are primes or products of primes.

Then $n + 1 = ab$ is a product of primes.

So $n + 1$ is either prime or a product of primes, as needed.

By (strong) induction, the conclusion holds for all *n* ≥ 2.

Remark. Note that although our inductive hypothesis is stronger than in recursive induction, we still only need a single base case.