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Recursive Induction

Motivating Example

Consider the sequence {ap}nen of integers defined by ag = 0,
a; =1and a1 = 5a, —6a,_1 for n > 1.

We say that the sequence {ap}nen is defined recursively: any given
term is determined by (the two) terms before it.

The first few terms of the sequence are
0,1,5,19,65,211,665,...

In general, to compute a, recursively for a given n, one must first
compute ag, a1, a», as,....ap—1-

Question 1: Can we find an explicit formula for a, in terms of n
alone? That is, can we express a,, in closed form?
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Recursive Induction

Answer 1: Yes! We claim that a, = 3" — 2" for all n € N.

Indeed, for example we have

30 -20=1-1=0=a,

31 _2t=3_2=1=a,
32-22=9—4=5=a,

33 -23=27-8=19= a3,
3% -2 =81—-16 =65 = a,,
3% — 25 =243 — 32 =211 = as.

Question 2: How can we prove this formula in general?

Answer 2: The recursive relationship a,+1 = ba, — 6a,_1 makes
induction a clear choice.
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Recursive Induction

Missing Information

We just established 5 base cases, so let's look at the inductive step.

Suppose a, = 3" — 2" for some n > 0. Then

apny1 =bap, —6a,-1=53"-2")—6a,1 =---?
~—~—
?

The inductive hypothesis says nothing about a,_1. What now?

If we also knew that a,_; = 3" 1 — 271 then we'd have

5(3" —2") —6a,_1 = 5(3" — 2") — (371 —2"°1)
=5.3"-2.3.3""1 _5.2"43.2.0"1
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Recursive Induction

=5-3"-2.3"-5.2"4+3.2"
=3.3"-2.2" =3 ot

which proves the n+ 1 case.

So the induction works provided we can take two previous cases as
our inductive hypothesis.

This brings us to a weak form of strong induction known as
Recursive Induction.

Recursive Induction allows one to assume any fixed number k > 1
of previous cases in the inductive hypothesis.
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Recursive Induction

Theorem 1 (Recursive Induction)

Let P(n) be a statement in the free variable n. Suppose there is a
k € N* so that:

1. P(0),P(1),P(2),...,P(k —1) are all true;
2. Foralln>k—1,

[P(n)AP(n—1)A--- AP(n—k+1)] = P(n+1).

Then P(n) is true for all n € N.

Remarks.

© This says we can use k previous cases when we induct,
provided we check k base cases.

@ Recursive induction and standard induction are logically
equivalent.
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Recursive Induction

Back to the Sequence

Let’s finish off our example.

Define a sequence {a,} by ap =0, a1 = 1 and ap+1 = 5a, — 6ap—1
for n > 1. Prove that a, = 3" — 2" for all n € N.

Solution. We use (recursive) induction on n > 0 (with k = 2).

When n = 0 we have ag = 0 = 3% — 20, so the formula in question
holds.

When n =1 we have a3 = 1 = 3! — 21, so the formula continues
to hold.

Now let n > 1. Suppose a, = 3" — 2" and a,_; = 3" — 21,
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Recursive Induction

Since n > 1, we know that

an4+1 = 5a, — 6‘37"—1
— 5(3n _ 2n) _ 6(3n—1 _ 2n—1)

: (as above)

_ an+l n+1
= 3l _ontl

which is the n 4 1 case of the formula.
By (recursive) induction, the formula holds for all n > 0. O

Remark. We always start the inductive step with “Let n > ¢,"
where n = £ is the final base case.
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Another Motivating Example

Consider the following well-known result.

Every integer n > 2 is either prime or a product of primes.

Remark. Here “prime” means “prime number.”

Intuitively, if nisn't prime, we can factor it as n = ab with a, b > 1.

If they aren’t prime, factor a and b in the same way. Then factor
their factors, etc.

Stop when all the factors become prime, as they must since
indefinite factorization is impossible.
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We can give a “clean” version of this argument using induction.
Let P(n) = “n is prime or a product of primes.”
Since 2 is prime, P(2) is true, and we have at least one base case.

Let n > 2. We need to suppose P(m) for some 2 <m < n+1
(the inductive hypothesis) and conclude P(n+ 1) is true.

Now n + 1 is either prime or composite.

If n4 1 is prime, P(n+ 1) is true automatically. So suppose n+ 1
is composite.

Then n+1=abwith1l<ab<n+1.
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Which Hypotheses?

If P(a) and P(b) are true, then a, b are both primes or products of
primes.

Thus n+ 1 = ab is a product of primes, and P(n+ 1) is true.

Question: In order for this argument to work, which P(m) do we
need to include in the inductive hypothesis?

All we know about the divisors a,bof n+1isl <a,b<n+1.
So we get “greedy” and suppose...
Answer: All P(m) for1<m<n+1.

This is known as strong induction.
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Strong Induction

Theorem 2 (Strong Induction)

Let P(n) be a statement in the free variable n. Suppose that:
1. P(0) is true;

2. ForallneN, [P(n)AP(n—1)A--- AP(0)] = P(n+1).
Then P(n) is true for all n € N.

Remarks.

© Rather than say "Suppose P(n) and P(n—1) and ...," one
simply says “Suppose P(k) for all 0 < k < n.”

© Strong induction is also logically equivalent to standard
induction.
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Back to Example 2

Let's return to our previous example.

Every integer n > 2 is either prime or a product of primes.

Solution. We use (strong) induction on n > 2.

When n = 2 the conclusion holds, since 2 is prime.

Let n > 2 and suppose that for all 2 < k < n, k is either prime or
a product of primes.

Either n+ 1 is prime or n+ 1 = ab with 2 < a,b, < n.
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In the latter case, the inductive hypothesis implies that a, b are
primes or products of primes.

Then n+1 = ab is a product of primes.
So n+ 1 is either prime or a product of primes, as needed.
By (strong) induction, the conclusion holds for all n > 2. O

Remark. Note that although our inductive hypothesis is stronger
than in recursive induction, we still only need a single base case.
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