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Motivating Example

Consider the sequence {an}n∈N of integers defined by a0 = 0,
a1 = 1 and an+1 = 5an − 6an−1 for n ≥ 1.

We say that the sequence {an}n∈N is defined recursively: any given
term is determined by (the two) terms before it.

The first few terms of the sequence are

0, 1, 5, 19, 65, 211, 665, . . .

In general, to compute an recursively for a given n, one must first
compute a0, a1, a2, a3, . . . .an−1.

Question 1: Can we find an explicit formula for an in terms of n
alone? That is, can we express an in closed form?
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Answer 1: Yes! We claim that an = 3n − 2n for all n ∈ N.

Indeed, for example we have

30 − 20 = 1− 1 = 0 = a0,

31 − 21 = 3− 2 = 1 = a1,

32 − 22 = 9− 4 = 5 = a2,

33 − 23 = 27− 8 = 19 = a3,

34 − 24 = 81− 16 = 65 = a4,

35 − 25 = 243− 32 = 211 = a5.

Question 2: How can we prove this formula in general?

Answer 2: The recursive relationship an+1 = 5an − 6an−1 makes
induction a clear choice.
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Missing Information

We just established 5 base cases, so let’s look at the inductive step.

Suppose an = 3n − 2n for some n ≥ 0. Then

an+1 = 5an − 6an−1 = 5(3n − 2n)− 6 an−1
︸︷︷︸

?

= · · · ?

The inductive hypothesis says nothing about an−1. What now?

If we also knew that an−1 = 3n−1 − 2n−1, then we’d have

5(3n − 2n)− 6an−1 = 5(3n − 2n)− 6(3n−1 − 2n−1)

= 5 · 3n − 2 · 3 · 3n−1 − 5 · 2n + 3 · 2 · 2n−1
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= 5 · 3n − 2 · 3n − 5 · 2n + 3 · 2n

= 3 · 3n − 2 · 2n = 3n+1 − 2n+1,

which proves the n+ 1 case.

So the induction works provided we can take two previous cases as
our inductive hypothesis.

This brings us to a weak form of strong induction known as
Recursive Induction.

Recursive Induction allows one to assume any fixed number k ≥ 1
of previous cases in the inductive hypothesis.
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Recursive Induction

Theorem 1 (Recursive Induction)

Let P(n) be a statement in the free variable n. Suppose there is a

k ∈ N
+ so that:

1. P(0),P(1),P(2), . . . ,P(k − 1) are all true;

2. For all n ≥ k − 1,

[
P(n) ∧ P(n − 1) ∧ · · · ∧ P(n− k + 1)

]
⇒ P(n+ 1).

Then P(n) is true for all n ∈ N.

Remarks.

1 This says we can use k previous cases when we induct,
provided we check k base cases.

2 Recursive induction and standard induction are logically
equivalent.
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Back to the Sequence

Let’s finish off our example.

Example 1

Define a sequence {an} by a0 = 0, a1 = 1 and an+1 = 5an − 6an−1

for n ≥ 1. Prove that an = 3n − 2n for all n ∈ N.

Solution. We use (recursive) induction on n ≥ 0 (with k = 2).

When n = 0 we have a0 = 0 = 30 − 20, so the formula in question
holds.

When n = 1 we have a1 = 1 = 31 − 21, so the formula continues
to hold.

Now let n ≥ 1. Suppose an = 3n − 2n and an−1 = 3n−1 − 2n−1.
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Since n ≥ 1, we know that

an+1 = 5an − 6an−1

= 5(3n − 2n)− 6(3n−1 − 2n−1)

... (as above)

= 3n+1 − 2n+1,

which is the n + 1 case of the formula.

By (recursive) induction, the formula holds for all n ≥ 0.

Remark. We always start the inductive step with “Let n ≥ ℓ,”
where n = ℓ is the final base case.

Daileda Strong Induction



Recursive Induction Strong Induction

Another Motivating Example

Consider the following well-known result.

Example 2

Every integer n ≥ 2 is either prime or a product of primes.

Remark. Here “prime” means “prime number.”

Intuitively, if n isn’t prime, we can factor it as n = ab with a, b > 1.

If they aren’t prime, factor a and b in the same way. Then factor
their factors, etc.

Stop when all the factors become prime, as they must since
indefinite factorization is impossible.
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We can give a “clean” version of this argument using induction.

Let P(n) = “n is prime or a product of primes.”

Since 2 is prime, P(2) is true, and we have at least one base case.

Let n ≥ 2. We need to suppose P(m) for some 2 ≤ m < n + 1
(the inductive hypothesis) and conclude P(n + 1) is true.

Now n + 1 is either prime or composite.

If n+ 1 is prime, P(n + 1) is true automatically. So suppose n + 1
is composite.

Then n + 1 = ab with 1 < a, b < n + 1.
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Which Hypotheses?

If P(a) and P(b) are true, then a, b are both primes or products of
primes.

Thus n + 1 = ab is a product of primes, and P(n + 1) is true.

Question: In order for this argument to work, which P(m) do we
need to include in the inductive hypothesis?

All we know about the divisors a, b of n + 1 is 1 < a, b < n+ 1.

So we get “greedy” and suppose...

Answer: All P(m) for 1 < m < n + 1.

This is known as strong induction.
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Strong Induction

Theorem 2 (Strong Induction)

Let P(n) be a statement in the free variable n. Suppose that:

1. P(0) is true;

2. For all n ∈ N,
[
P(n) ∧ P(n− 1) ∧ · · · ∧ P(0)

]
⇒ P(n + 1).

Then P(n) is true for all n ∈ N.

Remarks.

1 Rather than say “Suppose P(n) and P(n− 1) and . . .,” one
simply says “Suppose P(k) for all 0 ≤ k ≤ n.”

2 Strong induction is also logically equivalent to standard
induction.
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Back to Example 2

Let’s return to our previous example.

Example 2

Every integer n ≥ 2 is either prime or a product of primes.

Solution. We use (strong) induction on n ≥ 2.

When n = 2 the conclusion holds, since 2 is prime.

Let n ≥ 2 and suppose that for all 2 ≤ k ≤ n, k is either prime or
a product of primes.

Either n + 1 is prime or n+ 1 = ab with 2 ≤ a, b,≤ n.
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In the latter case, the inductive hypothesis implies that a, b are
primes or products of primes.

Then n + 1 = ab is a product of primes.

So n + 1 is either prime or a product of primes, as needed.

By (strong) induction, the conclusion holds for all n ≥ 2.

Remark. Note that although our inductive hypothesis is stronger
than in recursive induction, we still only need a single base case.
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