Associativity of the Symmetric Difference

R. C. Daileda

Given sets A and B, their symmetric difference is

$$A\Delta B = (A \setminus B) \cup (B \setminus A) \tag{1}$$

$$= (A \cup B) \setminus (A \cap B). \tag{2}$$

Because (1) (and (2)) is symmetric in A and B, we immediately find that Δ is commutative. That is, $A\Delta B = B\Delta A$. The purpose of this note is to prove the following less obvious property of the Δ operation.

Proposition 1. The symmetric difference is associative. That is, given sets A, B and C, one has

$$(A\Delta B)\Delta C = A\Delta (B\Delta C).$$

This proposition is an almost immediate consequence of the characterization of $(A\Delta B)\Delta C$ given below.

Lemma 1. Let A, B and C be sets. Then

$$(A\Delta B)\Delta C = \left((A \cup B \cup C) \setminus [(A \cap B) \cup (A \cap C) \cup (B \cap C)] \right) \cup (A \cap B \cap C).$$
(3)

To see how the proposition follows from the lemma, note that the right hand side of (3) is invariant under permutation of A, B and C. Thus

$$(A\Delta B)\Delta C = (B\Delta C)\Delta A = A\Delta(B\Delta C),$$

where we have used the commutativity of Δ to obtain the final equality. So all we need to do now is prove the lemma.

Proof of Lemma 1. By (1), (2) and the distributive laws for \wedge and \vee we have¹

$$\begin{aligned} x \in (A\Delta B)\Delta C \\ &\cong (x \in A\Delta B \land x \notin C) \lor (x \notin A\Delta B \land x \in C) \\ &\cong \left(\left[(x \in A \land x \notin B) \lor (x \notin A \land x \in B) \right] \land x \notin C \right) \lor \left(\left[x \notin A \cup B \lor x \in A \cap B \right] \land x \in C \right) \\ &\cong \left(\left[(x \in A \land x \notin B) \lor (x \notin A \land x \in B) \right] \land x \notin C \right) \lor \left(\left[x \notin A \cup B \lor x \in A \cap B \right] \land x \in C \right) \\ &\cong \left[x \in A \land x \notin B \land x \notin C \right] \lor \left[x \notin A \land x \in B \land x \notin C \right] \lor \left[x \notin A \cup B \land x \in C \right] \lor \left[x \in A \cap B \land x \in C \right] \\ &\cong \left[x \in A \land x \notin B \land x \notin C \right] \lor \left[x \notin A \land x \in B \land x \notin C \right] \lor \left[x \notin A \land x \notin B \land x \in C \right] \lor \left[x \in A \cap B \cap C \right] \\ &\cong \left[x \in A \land x \notin B \cup C \right] \lor \left[x \in B \land x \notin A \cup C \right] \lor \left[x \in C \land x \notin A \cup B \right] \lor \left[x \in A \cap B \cap C \right]. \end{aligned}$$

For arbitrary statements P and Q, notice that

$$(P \lor Q) \land \neg Q \cong (P \land \neg Q) \lor (Q \land \neg Q) \cong P \land \neg Q,$$

¹Because it is symmetric in A, B and C, the final statement in this chain of equivalences is sufficient to prove Proposition

^{1.} It needs to be manipulated further, however, to prove Lemma 1.

since $Q \land \neg Q$ is a contradiction. Taking $P = (x \in A)$ and $Q = (x \in B \cup C)$, this implies

$$x \in A \land x \notin B \cup C \cong (x \in A \lor x \in B \cup C) \land x \notin B \cup C \cong x \in A \cup B \cup C \land x \notin B \cup C.$$

Similarly we have

$$\begin{aligned} x \in B \land x \not\in A \cup C &\cong x \in A \cup B \cup C \land x \notin A \cup C, \\ x \in C \land x \notin A \cup B &\cong x \in A \cup B \cup C \land x \notin A \cup B. \end{aligned}$$

So our computation of $x \in (A\Delta B)\Delta C$ continues with

$$\cong [x \in A \cup B \cup C \land x \notin B \cup C] \lor [x \in A \cup B \cup C \land x \notin A \cup C] \lor [x \in A \cup B \cup C \land x \notin A \cup B]$$
$$\lor [x \in A \cap B \cap C]$$

$$\begin{split} &\cong \left(\left[x \in A \cup B \cup C \right] \land \left[x \notin B \cup C \lor x \notin A \cup C \lor x \notin A \cup B \right] \right) \lor \left[x \in A \cap B \cap C \right] \\ &\cong \left(\left[x \in A \cup B \cup C \right] \land \left[x \notin (B \cup C) \cap (A \cup C) \cap (A \cup B) \right] \right) \lor \left[x \in A \cap B \cap C \right] \\ &\cong x \in \left((A \cup B \cup C) \land \left[(A \cup B) \cap (A \cup C) \cap (B \cup C) \right] \right) \cup (A \cap B \cap C). \end{split}$$

The result now follows from the fact that

$$(A \cup B) \cap (A \cup C) \cap (B \cup C) = [A \cup (B \cap C)] \cap (B \cup C)$$
$$= [A \cap (B \cup C)] \cup [(B \cap C) \cap (B \cup C)]$$
$$= (A \cap B) \cup (A \cap C) \cup (B \cap C),$$

where in the final line we have used the fact that $(B \cap C) \cap (B \cup C) = B \cap C$ since $B \cap C \subset B \cup C$. \Box

Appendix

A simpler but more sophisticated proof can be given using *characteristic functions* of sets. Given a set A, its characteristic function χ_A is defined by

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

Therefore A = B if and only if $\chi_A = \chi_B$. Multiplication and addition of characteristic functions correspond to certain set operations. Specifically, $\chi_A \chi_B = \chi_{A \cap B}$ and, provided we add modulo 2 (i.e. we assert that 1 + 1 = 0), $\chi_A + \chi_B = \chi_{A \Delta B}$. Because addition modulo 2 is associative, we have

$$\chi_{(A\Delta B)\Delta C} = \chi_{A\Delta B} + \chi_C$$

= $(\chi_A + \chi_B) + \chi_C$
= $\chi_A + (\chi_B + \chi_C)$
= $\chi_A + \chi_{B\Delta C}$
= $\chi_{A\Delta(B\Delta C)}$,

and hence $(A\Delta B)\Delta C = A\Delta(B\Delta C)$.