Associativity of the Symmetric Difference

R. C. Daileda

Given sets A and B, their symmetric difference is

AAB = (A\ B)U (B A) (1)
=(AUB)\ (ANB). (2)

Because (1) (and (2)) is symmetric in A and B, we immediately find that A is commutative. That is,
AAB = BAA. The purpose of this note is to prove the following less obvious property of the A operation.

Proposition 1. The symmetric difference is associative. That is, given sets A, B and C, one has

(AAB)AC = AA(BAC).

This proposition is an almost immediate consequence of the characterization of (AAB)AC given below.

Lemma 1. Let A, B and C be sets. Then

(AAB)AC = ((AUBUC) \[(ANB)U(ANCQC) U(BOC)]) UANBNCO). (3)
To see how the proposition follows from the lemma, note that the right hand side of (3) is invariant under
permutation of A, B and C. Thus
(AAB)AC = (BAC)AA = AA(BAC),

where we have used the commutativity of A to obtain the final equality. So all we need to do now is prove
the lemma.

Proof of Lemma 1. By (1), (2) and the distributive laws for A and V we have!

x € (AAB)AC
(e AABAz g C)V (r ¢ AABANx € ()

1%

([(meAA:agZB)v(ng/\meB)]Axng>\/([ngUBVmeAmB]/\meO)

1%

[teANc € BANxgClV[rg ANz e BAxgClV[r € AUBAzeC]Vze ANBAz €]
[te ANz € BNz gC|V[rg ANz e BNz ClV[z € ANz gBAzeC]V]ze ANBNC]
[te ANz g€ BUC|V[ze BNz g AUC|V[zeCAhaxg AUB]V[ze AnNBNC|.
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For arbitrary statements P and (), notice that

(PVQIA-Q=(PA-Q)V(QA-Q)=PA-Q,

1Because it is symmetric in A, B and C, the final statement in this chain of equivalences is sufficient to prove Proposition
1. It needs to be manipulated further, however, to prove Lemma 1.




since @ A =@ is a contradiction. Taking P = (z € A) and @ = (z € B U (), this implies
x€EAN2x € BUCE(x e AVe e BUC)ANz¢BUCYx e AUBUCAx ¢ BUC.

Similarly we have
reBANzg AUC=Zxec AUBUCANx g AUC,

reCNegAUB=Z2rxc AUBUCAxz ¢ AUB.
So our computation of x € (AAB)AC continues with

~[z2€ AUBUCA2z ¢ BUC|Vz€e AUBUCAz € AUC|Vzx€e AUBUCAxz ¢ AU B]
Ve ANBNC]

o <[xGAUBUC]/\[:v%BUC’Vx%AUC\/x%AUB])\/[xGAﬂBﬂC]
= <[zEAUBUC]/\[a:gZ(BUC’)ﬁ(AUC)ﬂ(AUB)])\/[:ceAﬁBﬂC]
~re ((AUBUC)\[(AUB)O(AUC)Q(BUC)])U(AﬁBﬂC).

The result now follows from the fact that

(AUB)N(AUC)N(BUC) =[AU(BNC)|N(BUC)
—[AN(BUO)U[BNC)N(BUC)]
—(ANB)U(ANC)U(BNC),

where in the final line we have used the fact that (BNC)N(BUC)=BNC since BNC C BUC. O

Appendix

A simpler but more sophisticated proof can be given using characteristic functions of sets. Given a set A,
its characteristic function y 4 is defined by

(2) 1, ifx € A,
€Tr) =
x4 0, ifzdA.

Therefore A = B if and only if x4 = xg. Multiplication and addition of characteristic functions correspond
to certain set operations. Specifically, x4xB = xanp and, provided we add modulo 2 (i.e. we assert that 1
+1=0), xa + xB = xaap. Because addition modulo 2 is associative, we have

X(AAB)AC = XAAB + XC
= (xa +xB) + xc
=xa+ (x5 +Xxc)
= XA+ XBAC
= XAA(BAC)>

and hence (AAB)AC = AA(BAC).



