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Given sets A and B, their symmetric difference is

A∆B = (A \B) ∪ (B \A) (1)

= (A ∪B) \ (A ∩B). (2)

Because (1) (and (2)) is symmetric in A and B, we immediately find that ∆ is commutative. That is,
A∆B = B∆A. The purpose of this note is to prove the following less obvious property of the ∆ operation.

Proposition 1. The symmetric difference is associative. That is, given sets A, B and C, one has

(A∆B)∆C = A∆(B∆C).

This proposition is an almost immediate consequence of the characterization of (A∆B)∆C given below.

Lemma 1. Let A, B and C be sets. Then

(A∆B)∆C =

(
(A ∪B ∪ C) \ [(A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)]

)
∪ (A ∩B ∩ C). (3)

To see how the proposition follows from the lemma, note that the right hand side of (3) is invariant under
permutation of A, B and C. Thus

(A∆B)∆C = (B∆C)∆A = A∆(B∆C),

where we have used the commutativity of ∆ to obtain the final equality. So all we need to do now is prove
the lemma.

Proof of Lemma 1. By (1), (2) and the distributive laws for ∧ and ∨ we have1

x ∈ (A∆B)∆C
∼= (x ∈ A∆B ∧ x 6∈ C) ∨ (x 6∈ A∆B ∧ x ∈ C)

∼=
(

[(x ∈ A ∧ x 6∈ B) ∨ (x 6∈ A ∧ x ∈ B)] ∧ x 6∈ C
)
∨
(

[x 6∈ A ∪B ∨ x ∈ A ∩B] ∧ x ∈ C
)

∼= [x ∈ A ∧ x 6∈ B ∧ x 6∈ C] ∨ [x 6∈ A ∧ x ∈ B ∧ x 6∈ C] ∨ [x 6∈ A ∪B ∧ x ∈ C] ∨ [x ∈ A ∩B ∧ x ∈ C]
∼= [x ∈ A ∧ x 6∈ B ∧ x 6∈ C] ∨ [x 6∈ A ∧ x ∈ B ∧ x 6∈ C] ∨ [x 6∈ A ∧ x 6∈ B ∧ x ∈ C] ∨ [x ∈ A ∩B ∩ C]
∼= [x ∈ A ∧ x 6∈ B ∪ C] ∨ [x ∈ B ∧ x 6∈ A ∪ C] ∨ [x ∈ C ∧ x 6∈ A ∪B] ∨ [x ∈ A ∩B ∩ C].

For arbitrary statements P and Q, notice that

(P ∨Q) ∧ ¬Q ∼= (P ∧ ¬Q) ∨ (Q ∧ ¬Q) ∼= P ∧ ¬Q,
1Because it is symmetric in A, B and C, the final statement in this chain of equivalences is sufficient to prove Proposition

1. It needs to be manipulated further, however, to prove Lemma 1.
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since Q ∧ ¬Q is a contradiction. Taking P = (x ∈ A) and Q = (x ∈ B ∪ C), this implies

x ∈ A ∧ x 6∈ B ∪ C ∼= (x ∈ A ∨ x ∈ B ∪ C) ∧ x 6∈ B ∪ C ∼= x ∈ A ∪B ∪ C ∧ x 6∈ B ∪ C.

Similarly we have
x ∈ B ∧ x 6∈ A ∪ C ∼= x ∈ A ∪B ∪ C ∧ x 6∈ A ∪ C,
x ∈ C ∧ x 6∈ A ∪B ∼= x ∈ A ∪B ∪ C ∧ x 6∈ A ∪B.

So our computation of x ∈ (A∆B)∆C continues with

∼= [x ∈ A ∪B ∪ C ∧ x 6∈ B ∪ C] ∨ [x ∈ A ∪B ∪ C ∧ x 6∈ A ∪ C] ∨ [x ∈ A ∪B ∪ C ∧ x 6∈ A ∪B]

∨ [x ∈ A ∩B ∩ C]

∼=
(

[x ∈ A ∪B ∪ C] ∧ [x 6∈ B ∪ C ∨ x 6∈ A ∪ C ∨ x 6∈ A ∪B]

)
∨ [x ∈ A ∩B ∩ C]

∼=
(

[x ∈ A ∪B ∪ C] ∧ [x 6∈ (B ∪ C) ∩ (A ∪ C) ∩ (A ∪B)]

)
∨ [x ∈ A ∩B ∩ C]

∼= x ∈
(

(A ∪B ∪ C) \ [(A ∪B) ∩ (A ∪ C) ∩ (B ∪ C)]

)
∪ (A ∩B ∩ C).

The result now follows from the fact that

(A ∪B) ∩ (A ∪ C) ∩ (B ∪ C) = [A ∪ (B ∩ C)] ∩ (B ∪ C)

= [A ∩ (B ∪ C)] ∪ [(B ∩ C) ∩ (B ∪ C)]

= (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C),

where in the final line we have used the fact that (B ∩ C) ∩ (B ∪ C) = B ∩ C since B ∩ C ⊂ B ∪ C.

Appendix

A simpler but more sophisticated proof can be given using characteristic functions of sets. Given a set A,
its characteristic function χA is defined by

χA(x) =

{
1, if x ∈ A,
0, if x 6∈ A.

Therefore A = B if and only if χA = χB . Multiplication and addition of characteristic functions correspond
to certain set operations. Specifically, χAχB = χA∩B and, provided we add modulo 2 (i.e. we assert that 1
+ 1 = 0), χA + χB = χA∆B . Because addition modulo 2 is associative, we have

χ(A∆B)∆C = χA∆B + χC

= (χA + χB) + χC

= χA + (χB + χC)

= χA + χB∆C

= χA∆(B∆C),

and hence (A∆B)∆C = A∆(B∆C).
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