

 $\begin{array}{c} \text{Complex Variables} \\ \text{Spring 2020} \end{array}$

Assignment 1.1 Due January 29

Exercise 1. If $z \in \mathbb{C}^{\times}$, prove that the equation $w^2 = z$ has exactly two solutions in \mathbb{C}^{1} . Express $\operatorname{Re} w$ and $\operatorname{Im} w$ in terms of $\operatorname{Re} z$ and $\operatorname{Im} z$.

Exercise 2. For $x, y \in \mathbb{R}$, the *complex conjugate* of $z = x + iy \in \mathbb{C}$ is defined to be $\overline{z} = x - iy$. Prove that the map $z \mapsto \overline{z}$ is a field automorphism of \mathbb{C} with fixed field \mathbb{R}^2 . What is its inverse?

Exercise 3. If $z \in \mathbb{C}^{\times}$, invert the matrix form of z to find expressions for $\operatorname{Re}(1/z)$ and $\operatorname{Im}(1/z)$ in terms of $\operatorname{Re} z$ and $\operatorname{Im} z$.

Exercise 4. Show that the eigenvalues of the matrix form of $z \in \mathbb{C}$ are precisely z and \overline{z} .

¹That is, every nonzero complex number has exactly two square roots.

²If $\sigma: F \to F$ is a field automorphism, the elements $a \in F$ satisfying $\sigma(a) = a$ form a subfield of F called the *fixed field* of σ .