

 $\begin{array}{c} \text{Complex Variables} \\ \text{Spring 2020} \end{array}$

Assignment 1.2 Due January 29

Exercise 1. Textbook exercise I.1(a)-(e).

Exercise 2. Textbook exercise I.1.3.

Exercise 3. Textbook exercise I.1.5.

Exercise 4. Textbook exercise I.1.6.

Exercise 5. Show that every real matrix of the form $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ can be factored uniquely in the form $\begin{pmatrix} r \\ v \end{pmatrix} \begin{pmatrix} u & -v \\ u & u \end{pmatrix}$, where $r \in \mathbb{R}_0^+$, and $u, v \in \mathbb{R}$ satisfy $u^2 + v^2 = 1$. Use this to derive the polar representation of complex numbers. [Suggestion: Take $r = \sqrt{x^2 + y^2}$.]