Exercise 1. Textbook exercise IV.4.1.

Exercise 2. Prove that $\int_{0}^{\pi} e^{\cos \theta} \cos (\sin \theta) d \theta=\pi$ by considering $\int_{\gamma}\left(e^{z} / z\right) d z$, where γ is the unit circle.

Exercise 3. Textbook exercise IV.4.2.

Exercise 4. Let f be analytic on a disk D and let γ be any simple loop in D. Prove that

$$
\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z=\int_{\gamma} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z
$$

for any $z_{0} \in D \backslash \gamma$. Generalize.

Exercise 5. Suppose that f is analytic on $|z|<1$ and that it satisfies the inequality $|f(z)| \leq 1$. Prove that $\left|f^{\prime}(0)\right| \leq 1$.

