Complex Variables

Assignment 2.1 Spring 2020

Due February 5

Exercise 1. Use de Moivre's formula and the binomial theorem to prove that

$$
\cos (n \theta)=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}(-1)^{k} \cos ^{n-2 k} \theta \sin ^{2 k} \theta
$$

for all $n \in \mathbb{N}$.

Exercise 2. In this exercise we will give an alternate proof of the triangle inequality.
a. Prove that the triangle inequality is equivalent to the statement that $\left|1+r e^{i \theta}\right| \leq 1+r$ for all $\theta \in \mathbb{R}$ and $r \geq 0$. [Suggestion: Use polar coordinates.]
b. Without using the triangle inequality, prove that $\left|1+r e^{i \theta}\right| \leq 1+r$ for all $\theta \in \mathbb{R}$ and $r \geq 0$. [Suggestion: Consider $\left|1+r e^{i \theta}\right|^{2}$.]

Exercise 3. Textbook exercise I.2.7.

