Complex Variables
Assignment 2.2
Spring 2020
Due February 5

Exercise 1. Let $n \in \mathbb{N}$.
a. Explain why $X^{n}-1=\prod_{\zeta \in \mu_{n}}(X-\zeta)$.
b. Use part a to prove that $\prod_{\zeta \in \mu_{n}} \zeta=(-1)^{n+1}$ and $\sum_{\zeta \in \mu_{n}} \zeta=0$ (for $n \geq 2$).

Exercise 2. Prove that for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ one has

$$
\sum_{\zeta \in \mu_{n}} \zeta^{k}= \begin{cases}n, & \text { if } k \equiv 0(\bmod n) \\ 0, & \text { otherwise }\end{cases}
$$

[Suggestion: Use the fact that $\mu_{n}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$, where $\omega=e^{2 \pi i / n}$.]

Exercise 3. For $n \in \mathbb{N}$, let $f(X)=X^{n}-1$ and $g(X)=X^{n-1}+X^{n-2}+\cdots+X+1$ so that $f(X)=(X-1) g(X)$. Suppose $\zeta \in \mu_{n}, \zeta \neq 1$.
a. Prove that $f^{\prime}(\zeta)=(\zeta-1) g^{\prime}(\zeta)$. Conclude that $g^{\prime}(\zeta)=\frac{n \zeta^{n-1}}{\zeta-1}$.
b. Use part a to show that $n \zeta^{n-1}+(n-1) \zeta^{n-2}+\cdots+2 \zeta+1=\frac{n}{\zeta-1}$.

Exercise 4. Compute μ_{8}.

Exercise 5. Find the 3 rd roots of -8 .

Exercise 6. Find the 4th roots of $a=3-4 i$. [Warning: Double check the sign of the imaginary part of your answer.]

